UNIVERSIDAD NACIONAL DE AGRICULTURA

VALORACIÓN ECOLÓGICA DE LA RED HÍDRICA A TRAVÉS DE MACROINVERTEBRADOS BENTÓNICOS EN LA ZONA SUR DE LA RESERVA DEL HOMBRE Y BIÓSFERA DEL RÍO PLÁTANO.

TESIS

CATACAMAS OLANCHO

VALORACIÓN ECOLÓGICA DE LA RED HÍDRICA A TRAVÉS DE MACROINVERTEBRADOS BENTÓNICOS EN LA ZONA SUR DE LA RESERVA DEL HOMBRE Y BIÓSFERA DEL RÍO PLÁTANO.

POR:

EDUAR AMILCAR SÁNCHEZ PÉREZ.

JORGE ORBIN CARDONA HERNÀNDEZ, M. Sc ASESOR PRINCIPAL

TESIS

PRESENTADA A LA

UNIVERSIDAD NACIONAL DE AGRICULTURA

COMO REQUISITO PREVIO A LA OBTENCIÓN DEL TITULO DE INGENIERO
EN GESTION INTEGRAL DE LOS RECURSOS NATURALES

CATACAMAS, OLANCHO

HONDURAS, C.A

ABRIL 2023

ACTA DE SUSTENTACIÓN

DEDICATORIA

A DIOS por su apoyo infinito, sus bendiciones, por nunca dejarme de la mano, por darme la fortaleza y perseverancia de seguir adelante.

A Mis Padres <u>Amilcar Sanchez</u> y <u>Lívida Joselina Pérez</u> por siempre estar a mi lado apoyándome incondicionalmente y motivándome a seguir adelante con mis metas.

A Mis Hermanos Elam David y Eder Eliud por estar siempre a mi lado y brindarme esa hermandad que siempre fueron mi impulso y fuente de aliento.

A Mis Abuelos Juan Sanchez, Fidencia Marquez, Bernardino Gaytán, Martha Juárez, por guiarme siempre por el buen camino y darme siempre los mejores consejos de vida.

AGRADECIMIENTO

A DIOS por su apoyo infinito, sus bendiciones, por nunca dejarme de la mano, por darme la fortaleza y perseverancia de seguir adelante.

A mis padres **Amilcar Sanchez y Lívida Juárez** por su apoyo incondicional y ese coraje de superación que me inculcaron y esas palabras de apoyo, por haberme formado con mucha disciplina, humildad, y lograr ser un profesional útil a la sociedad y siempre obediente a Dios y a mis padres.

A mis hermanos Elam David y Eder Eliud, les agradezco por su apoyo incondicional que me brindaron durante este periodo de transformación del que soy parte, por estar siempre al lado de mis padres.

A mi Asesor M.s.c JORGE ORBIN CARDONA HERNÀNDEZ, quien con su dirección, paciencia y tiempo me guió hasta la culminación de mi trabajo de tesis

A mis asesores auxiliares Ing. Ramon Canana y Lic. Melissa de igual forma a, Lic Jafa. por disponer de su tiempo para orientarme con su asesoría para llevar a cabo mi trabajo de Investigación.

A mis amigos (as) de clases y aventuras Marcos, Mario, Mercedes y Sohed por haber estado conmigo en todo momento durante nuestro proceso académico en estos inolvidables cuatro años. Así mismo a Roxana, Kati, Jonathan y Nohemí, por haber sido ese apoyo incondicional durante el proceso de mi formación académica y con quienes compartí muchas experiencias y aprendizajes los cuales me enseñaron a ser mejor cada día.

CONTENIDO

DEDICATORIA	iv
AGRADECIMIENTO	v
CONTENIDO	vi-viii
LISTA DE FIGURAS	ix-x
LISTA DE CUADROS	x
LISTA DE ANEXOS	xi
I. INTRODUCCIÓN	1
II. OBJETIVOS	2
2.1. Objetivo General	2
2.2. Objetivos Específicos	2
III REVISIÓN DE LITERATURA	3
3.1. Reserva del hombre y biosfera Río Plátano	3
3.2. El agua	3
3.2.1. Importancia de la calidad del agua	3
3.2.2. Características del agua.	4
3.2.3. Calidad del agua	4
3.2.4. Contaminación del agua	5
3.3. Antecedentes históricos de la bioindicación o biomonitoreo	5
3.2.5. Uso de macroinvertebrados acuáticos como bioindicadores	5
3.3. Índice de Shannon	6
3.4. Bioindicadores	7
3.4.1. Importancia de los indicadores biológicos	7
3.4.2. Utilidad de los bioindicadores	
3.4.3. Macroinvertebrados.	8
3.4.4. Ventajas del uso de macroinvertebrados bentónicos	9
3.4.5. Macroinvertebrados bentónicos	
3.4.6. Ephemeroptera	
3.4.7. Plecoptera	

3.4.8. Trichoptera	13
3.4.9. Diptera	15
3.4.10. Odonata	16
3.4.11. Coleóptera	17
IV.MATERIALES Y METODO	20
4.1. Descripción del área de estudio	20
4.2. Materiales y equipo utilizados	21
4.1.1. Conductividad eléctrica	22
4.1.2. pH	23
4.1.3. Sólidos Disueltos Totales	23
4.1.4. Oxígeno	23
4.4.1. Método de recolección de muestras para clasificar los macroinvertebrados bentonicos.	24
4.4.2 Implementación del índice de EPT (Ephemeroptera, Plecóptera y Trichoptera), conocer la condición del agua en le red hídrica	_
4.4.3 Índice de Diversidad Biológica	29
V. RESULTADOS Y DISCUSIÓN	31
5.1. Resultados de parametros fisicoquímicos evaluados	31
5.2. Diversidad y riqueza de los macroinvertebrados bentónicos	35
5.2.1. Clasificación de la población de macroinvertebrados bentónicos	35
5.2.2. Muestreos realizados	36
5.3. Índice EPT (Ephemeroptera, Plecoptera y Trichoptera)	37
5.3.1. EPT para el primer muestreo.	37
5.3.2. EPT para el segundo muestreo	38
5.3.3. EPT para el tercer muestreo	38
5.3.4. EPT para el cuarto muestreo	39
5.3.5. EPT para el quinto muestreo	39
5.3.6. EPT para el sexto muestreo	40
5.4. Índice de Shannon Weaver	40
5.5. Análisis estadístico multivariado	41
5.5.1. Curva de acumulación de especies	43
CONCLUSIONES	
RECOMENDACIONES	48

BIBLIOGRAFIA	49
ANEXOS	53

LISTA DE FIGURAS

Figura 1 Orden Ephemeroptera fotografía por Córdova (2016)	11
Figura 2 Orden Plecoptera fotografía por Córdova (2016)	13
Figura 3 Orden Trichoptera fotografía por Córdova (2016)	15
Figura 4 Orden Diptera fotografía por Córdova (2016)	16
Figura 5 Orden Odonata Fotografía por Córdova (2016)	16
Figura 6 Orden Coleoptera Fotografía Por Córdova (2016)	17
Figura 7 Ubicación geográfica de los puntos de muestreo	21
Figura 8 Sonda Multiparamétrica HANNA	22
Figura 9 Oxímetro marca HANNA	24
Figura 10 Trampas para la captura de Macroinvertebrados Bentónicos	25
Figura 11 Instalaciones y equipo del Laboratorio de Biología UNAG.	26
Figura 12 Equipos e instrumentos utilizados para la identificación de Macroinvertebra	ados
Bentónicos.	27
Figura 13 Especies identificadas de Macroinvertebrados Bentónicos	29
Figura 14 Conductividad Eléctrica para cada punto de muestreo	32
Figura 15 Parámetro de Potencial de Hidrogeno en los diferentes puntos de muestreo	33
Figura 16 Parámetro de Solidos Disueltos Totales para cada punto de muestreo	33
Figura 17 Sólidos Disueltos Totales para cada punto de muestreo	34
Figura 18 Oxígeno Disuelto para cada punto de muestreo	35
Figura 19 Datos de la identificación de individuos por cada punto de muestreo	37
Figura 20 Componentes Principales	43
Figura 21 Curva de acumulación de especies durante la investigación	44
Figura 22Curvas de especies por punto de muestreo.	45

LISTA DE CUADROS

Cuadro 1 Clasificación de la calidad del agua según el índice de EPT28
Cuadro 2 Clasificación de la calidad del agua según el índice EPT para el primer muestreo.
38
Cuadro 3 Clasificación de la calidad del agua según el índice EPT para el segundo muestreo.
38
Cuadro 4 Clasificación de la calidad del agua según el índice EPT para el tercer muestreo.
39
Cuadro 5 Clasificación de la calidad del agua según el índice EPT para el cuarto muestreo.
39
Cuadro 6 Clasificación de la calidad del agua según el índice EPT para el quinto muestreo.
40
Cuadro 7 Clasificación de la calidad del agua según el índice EPT para el sexto muestreo.
40
Cuadro 8 Índice de SHANNON para cada punto de muestreo

LISTA DE ANEXOS

Anexo 1 Ubicación Geográfica donde se desarrolló la investigación	54
Anexo 2Conductividad Eléctrica	54
Anexo 3 Potencial de Hidrogeno	55
Anexo 4 Solidos Disueltos Totales	55
Anexo 5 Oxígeno Disuelto	56
Anexo 6 Población de Macroinvertebrados identificados durante la investigación	56
Anexo 7 Índice EPT	57
Anexo 8 Matriz para la recolección de datos macroinvertebrados bentónicos	58
Anexo 9 Análisis de Componentes Principales	59

Eduar Amilcar Sanchez Pérez 2023. Determinar la calidad ecológica de la red hídrica mediante macroinvertebrados bentónicos en la zona sur de la reserva del hombre y biósfera del río plátano. Tesis Ingeniería en Gestión Integral de los Recursos Naturales Universidad Nacional de Agricultura. Catacamas Olancho, Honduras Centro America, 71 págs.

RESUMEN

La presente investigación se basó en determinar la calidad ecológica de la red hídrica a través de macroinvertebrados bentónicos en la zona sur de la Reserva del Hombre y Biósfera del Río Plátano (RHBRP). El objetivo de este estudio fue analizar la calidad del agua en la red hídrica, así como la clasificación de la diversidad y riqueza de los macroinvertebrados, para luego examinar el estado de los cuerpos de agua mediante la implementación del índice EPT. Para la composición fisicoquímica se utilizaron diversas sondas multiparamétricas de la marca HANNA. De igual manera, se utilizó el índice de SHANNON para la clasificación y riqueza, y se realizó análisis de componentes principales mediante programas estadísticos para determinar la salud de los cuerpos de agua. El índice EPT se utilizó para examinar la condición y determinar la calidad del agua. Se obtuvieron resultados fisicoquímicos aceptables, indicando buena calidad del agua con valores de pH entre 6.5 y 8.5. El índice de SHANNON mostró que existe una baja diversidad de especies. El índice EPT permitió examinar la calidad del agua en cada punto de muestreo, con resultados aceptables a excepción del río Wampu Los Mangos. En conclusión, la implementación de los diferentes procesos y análisis de la red de agua dio como resultado una buena calidad del agua en esta zona, así como buenos índices de EPT, que reflejan una buena calidad del agua. La baja diversidad de especies en esta red hídrica se debe a los altos porcentajes de sales presentes en estos cuerpos de agua indicando un proceso progresivo de degradación ecológica del cuerpo de la red hídrica.

I. INTRODUCCIÓN

Para Ignacia (2015), la degradación del suelo (física, química y biológica), se evidencia en una reducción de la cobertura vegetal, de igual forma la disminución de la fertilidad, la contaminación del suelo y del agua y, debido a ello, el empobrecimiento de las cosechas. Dentro de las principales causas de la degradación se incluyen la erosión hídrica, y la intensa aplicación de agroquímicos y la deforestación.

Por otro lado, el creciente interés por conocer y proteger los ecosistemas fluviales y estudiar sus cambios en el tiempo, ha estimulado en las últimas décadas el desarrollo de criterios biológicos que permitan estimar el efecto de las intervenciones humanas en ellos. Dentro de los indicadores biológicos más utilizados en la evaluación de los ecosistemas fluviales del mundo, destacan los macroinvertebrados bentónicos (> 500 µm), ya que estos presentan ventajas respecto a otros componentes de la biota acuática (Figueroa et al. 2003).

Los macroinvertebrados bentónicos son un grupo de organismos acuáticos, siendo los más utilizados para el monitoreo. Los bioindicadores de contaminación, calibran la calidad del ecosistema principalmente a través de la información que es recogida en el agua, para poder evaluar el nivel de deterioro ambiental en un ecosistema acuático.

El objetivo de esta investigación es determinar la calidad ecológica de la red hídrica en la zona sur de la Biosfera del Río Plátano y recabar información sobre la calidad de esta agua, mediante el uso de macroinvertebrados bentónicos.

II. OBJETIVOS

2.1. Objetivo General

Analizar la calidad ecológica de la red hídrica en la sur de la Biosfera del Río Plátano mediante Macroinvertebrados Bentónicos.

2.2.Objetivos Específicos

Determinar la composición fisicoquímica en la red hídrica de la zona sur de la Biosfera del Río Plátano.

Clasificar la diversidad y riqueza de los macroinvertebrados bentónicos en la red hídrica de la zona sur de la Biosfera del Río Plátano.

Valorar la condición de los cuerpos de agua mediante la implementación del índice de EPT (Ephemeroptera, Plecóptera y Trichoptera), en la red hídrica de la zona sur de la Biosfera del Rio Plátano.

III. REVISIÓN DE LITERATURA

3.1.Reserva del hombre y biosfera Río Plátano

La Reserva del Hombre y la Biosfera del Río Plátano (RHBRP), fue creada en 1980 mediante decreto Ley 977–80. Ante la colonización desenfrenada y el avance de la frontera agrícola y la amenaza de la pérdida de la biodiversidad, el Gobierno de la República modificó los límites originales de la RHBRP mediante decreto legislativo 170–97, para garantizar su conservación como patrimonio natural nacional y mundial. La RHBRP cuenta con veintiocho (28) ecosistemas terrestres y cinco (5) marino costeros, agrupados en tres (3) grandes ecorregiones, las cuales son: (1) zona ecológica marina, (2) zona ecológica de playa y (3) zona ecológica de los humedales costeros (Martínez et al., 2014).

3.2. El agua

El agua es una sustancia que se compone por dos átomos de hidrógeno y un átomo de oxígeno (H₂O) y se puede encontrar en estado sólido (hielo), gaseoso (vapor) y líquido (agua). Las propiedades físicas y químicas del agua son muy importantes para la supervivencia de los ecosistemas (Valdivielso, 2020).

3.2.1. Importancia de la calidad del agua

La importancia del agua en la vida de cualquier ser vivo del planeta es de suma importancia. Por ello, su calidad es un tema que preocupa cada vez más en países de todo el mundo por motivos como la salud de la población, el desarrollo económico nacional y la calidad ambiental de los ecosistemas. Cabe recordar que hay 2,400 millones de personas que no

tienen garantizado el acceso al saneamiento y unos 760 millones de personas no tienen acceso a agua potable, pese a que tanto el agua como el saneamiento son derechos humanos reconocidos por las Naciones Unidas (García, 2013).

3.2.2. Características del agua.

Las características del agua pueden ser químicas, físicas o biológicas y según el contenido puede clasificarse en diferentes tipos (agua dulce, salada, blanda, dura...). A continuación, se describen las principales características del agua:

- La densidad del agua es 1gr/cm³.
- El agua es la sustancia con mayor calor específico (4.180 J/Kg/°C), aunque varía según la temperatura.
- El calor latente que el agua requiere para romper un puente de hidrógeno y formar vapor es muy elevada (539 Kcal/Kg).
- La tensión superficial del agua es muy alta.
- Además, las características del color, la turbidez y la conductividad se utilizan como parámetros de la calidad del agua (Valdivielso, 2020).

3.2.3. Calidad del agua

Calidad del agua se refiere a las características químicas, físicas, biológicas y radiológicas del agua. Es una medida de la condición del agua en relación con los requisitos de una o más especies bióticas o a cualquier necesidad humana o propósito. Se utiliza con mayor frecuencia por referencia a un conjunto de normas contra los cuales puede evaluarse el cumplimiento. Los estándares más comunes utilizados para evaluar la calidad del agua se relacionan con la salud de los ecosistemas, seguridad de contacto humano y agua potable (García, 2013).

3.2.4. Contaminación del agua

Se define como la acumulación de una o más sustancias ajenas al agua que pueden generar una gran cantidad de consecuencias, entre las que se incluye el desequilibrio en la vida de los seres vivos (animales, plantas y personas) (ONU 2009).

Los principales contaminantes del agua incluyen bacterias, virus, parásitos, fertilizantes, plaguicidas, fármacos, nitratos, fosfatos, plásticos, desechos fecales y hasta sustancias radiactivas. Estos elementos no siempre tiñen el agua, haciendo que la contaminación hídrica resulte invisible en muchas ocasiones. Por esta razón, se suele recurrir al análisis químico de pequeñas muestras y organismos acuáticos para conocer el estado de la calidad del agua (ONU 2009).

3.3. Antecedentes históricos de la bioindicación o biomonitoreo

El uso de insectos acuáticos como indicadores de calidad de agua data de mucho tiempo y las primeras citas se encuentran en la literatura desde hace más de 150 años. Así, en Europa, en el año 1848, Kolenati mencionó que la ausencia de larvas de tricópteros en un río fue causada por la influencia de una ciudad aguas arriba (Sermeño 2010).

3.2.5. Uso de macroinvertebrados acuáticos como bioindicadores

La expresión macroinvertebrados bentónicos hace alusión a organismos que habitan los sustratos del fondo (sedimentos, detritus, palos sumergidos, macrófitas, algas filamentosas y otros) de hábitats dulceacuícolas, al menos durante parte de su ciclo vital; considerándose específicamente como macroinvertebrados, aquellos organismos que por su tamaño pueden ser retenidos en mallas con aberturas desde 200 a 500 µm (Sermeño 2010).

Las razones por las cuales se consideran a los macroinvertebrados como los mejores indicadores de la calidad del agua son muchas, entre las que se citan las siguientes:

- Son abundantes, de amplia distribución y fáciles de recolectar.
- Poseen una gran diversidad de especies, con un amplio espectro de respuestas ambientales (grados de tolerancia).
- Son sedentarios en su mayoría, reflejando así las condiciones locales (extensión espacial de la contaminación).
- Son relativamente fáciles de identificar en comparación con otros grupos de organismos como los virus, bacterias, entre otros (por lo menos a nivel de familia o género).
- Presentan los efectos de variaciones ambientales de corto tiempo.
- Facilitan información para integrar efectos acumulativos.
- Sus ciclos vitales son relativamente largos.
- Son apreciables a simple vista.
- Se encuentran en una amplia variedad de ambientes acuáticos.
- Se pueden criar en el laboratorio (Sermeño 2010).

3.3. Índice de Shannon.

Uno de los índices más utilizados para cuantificar la biodiversidad específica es el de Shannon, también conocido como Shannon-Weaver (Shannon y Weaver, 1949), derivado de la teoría de información como una medida de la entropía. El índice refleja la heterogeneidad de una comunidad sobre la base de dos factores: el número de especies presentes y su abundancia relativa. Conceptualmente es una medida del grado de incertidumbre asociada a la selección aleatoria de un individuo en la comunidad.

El índice de Shannon–Weaver fue calculado para cada uno de los ríos muestreados y para cada uno de sus microhábitats. Los valores del índice fueron comparados con una prueba t-student modificada para índices de diversidad (Brower et al, 1998).

Adicionalmente, se realizó una prueba de chi-cuadrado (X2) entre los datos de abundancia de macroinvertebrados para los dos tipos de microhábitats evaluados en los ríos. Así, también se realizó una prueba de chi-cuadrado para tablas de contingencia entre los datos de hojarasca-sedimento para todos los ríos.

3.4. Bioindicadores

El monitoreo biológico o biomonitoreo se basa en el uso sistemático de respuestas biológicas de los organismos que habitan el agua para evaluar cambios a nivel ambiental y analizar la calidad del ecosistema. A estos organismos se los denomina indicadores biológicos o bioindicadores de calidad del agua. Los bioindicadores comúnmente utilizados en monitoreos de calidad de agua son: bacterio plancton, fitoplancton, perifiton, macrófitas, macroinvertebrados y peces (Torres 2011).

El biomonitoreo puede incluir respuestas a nivel molecular (biomarcadores), el análisis de poblaciones de bioindicadores e índices bióticos que consideran toda la comunidad denominados índices multimétricos. La fuerte modificación antrópica en las cuencas hídricas y la eficiencia de esta metodología hacen que sea actualmente un abordaje muy utilizado (Torres 2011).

3.4.1. Importancia de los indicadores biológicos

El uso de especies para detectar procesos y factores en los ecosistemas acuáticos tiene varias ventajas: Las poblaciones de animales acumulan información que 105 análisis físico-

quimicos no detectan. Es decir, las especies y las comunidades bióticas responden a efectos acumuladores intermitentes que en determinado momento de un muestreo de variables químicas o físicas pasa por alto. La vigilancia biológica evita la determinación regular de un número excesivo de parámetros químicos y físicos, ya que en los organismos se sintetizan o confluyen muchas de estas variables. Los indicadores biológicos permiten detectar la aparición de elementos contaminantes nuevos o insospechados (Tadeo 2000).

3.4.2. Utilidad de los bioindicadores

El principal uso que se le ha dado a los indicadores biológicos ha sido la detección de sustancias contaminantes, ya sean estos metales pesados, materia orgánica, nutrientes (eutroficación) o elementos tóxicos como hidrocarburos, plaguicidas, ácidos, bases y gases, con miras a establecer la calidad del agua. En adición a esta utilización primordial, existe otra serie de fenómenos que no son de origen cultural y que se pueden determinar mediante bioindicadores, como son, por ejemplo:

- Saturación de oxígeno
- Condiciones de anoxia
- Condiciones de pH
- Estratificación térmica y de oxígeno
- Turbulencia del agua
- Torrencialidad
- Eutroficación natural
- Grado de mineralización del agua
- Presencia de determinados elementos como hierro, sílice y calcio
- Fenómenos de sedimentación (Tadeo 2000).

3.4.3. Macroinvertebrados

Los Macroinvertebrados Acuáticos (MIA) son los organismos que habitan en los sedimentos de los ecosistemas acuáticos, o en cualquier tipo de sustrato (hoja, tronco, macrófitas, entre otros). Se incluyen los individuos iguales o mayores a 250 µm, entre ellos se encuentran los turbelarios, nematodos, oligoquetos, hirudineos, insectos, arácnidos, crustáceos (Torres 2011).

Son excelentes indicadores biológicos de las condiciones de calidad de un determinado recurso hídrico superficial. Cuando hay evidencias de contaminación orgánica o química los macroinvertebrados son utilizados para determinar la calidad del ecosistema acuático (Torres 2011).

3.4.4. Ventajas del uso de macroinvertebrados bentónicos

Los bioindicadores de contaminación, calibran la calidad del ecosistema a través de información que es recogida en el agua, en la atmósfera o en el suelo, y permiten identificar, dentro de un marco de calidad, el nivel de deterioro ambiental. Para poder evaluar el deterioro ambiental de un ecosistema acuático debido a un contaminante es necesaria la selección de una comunidad bioindicadora de calidad de agua y el conocimiento previo de la biota que caracteriza la zona de estudio. Uno de los grupos de los organismos acuáticos más utilizados para el monitoreo, son los macroinvertebrados de la comunidad bentónica. Entre las ventajas que posee cualquier macroinvertebrado que conforme un taxa bioindicador se pueden mencionar las siguientes (Arrivillaga 2008).

- La naturaleza sedentaria de muchas especies facilita la evaluación espacial de efectos adversos a largo plazo en la comunidad.
- Presentan ciclos de vida relativamente cortos comparados con los peces y reflejan con mayor rapidez las alteraciones del medio ambiente mediante cambios en la estructura de sus poblaciones y comunidades.

- Son de amplia distribución, abundantes y de fácil recolección por su tamaño que los hace visibles a simple vista.
- Viven y se alimentan en o sobre los sedimentos donde tienden a acumularse las toxinas, las cuales se incorporan a la cadena trófica a través de ellos.
- Son sensibles a los factores de perturbación y responden a las sustancias contaminantes presentes tanto en el agua como en los sedimentos (Arrivillaga 2008).
- Entre las desventajas de cualquier macroinvertebrado que conforme un taxón bioindicador se pueden mencionar las siguientes:
 - Se trata de una comunidad heterogénea y la taxonomía de algunos grupos no es bien conocida.
 - Las variaciones estacionales o de dinámica de la población puede interferir en la interpretación o comparación de resultados.
 - Por lo tanto, la evaluación basada en macroinvertebrados bentónicos como bioindicadores de la contaminación, podría generar información de alguna perturbación que se genere y afecte los ecosistemas acuáticos (Arrivillaga 2008).

3.4.5. Macroinvertebrados bentónicos

3.4.6. Ephemeroptera

El orden de los efemerópteros (efímeras) es un grupo de frágiles insectos exclusivamente acuáticos y relativamente primitivos. Presentan una característica única entre los insectos, la de poseer un estadio terrestre volador (el "sub-imago") previo al del adulto sexualmente maduro. Las efímeras forman una parte importante de las cadenas alimenticias en ríos y

arroyos (como alimento para otros organismos acuáticos, procesadores de materia orgánica y como herbívoros), y son elementos importantes en la transferencia de energía dentro del sistema acuático. Las ninfas se encuentran en casi todo tipo de cuerpos de agua, aunque en mayor abundancia y diversidad en ríos y arroyos de fondos rocosos. Los adultos viven desde unas pocas horas hasta algunos días, por lo que se hace difícil encontrarlos en la naturaleza, aunque se pueden atraer a luces puestas cerca de los ríos, en especial durante el amanecer y anochecer (crepúsculo) (Arrivillaga 2008).

Importancia

El orden Ephemeroptera ha sido considerado por muchos autores como uno de los órdenes más sensibles a la contaminación del agua, junto con Plecoptera y Trichoptera ("EPt" taxa). Sin embargo, dentro del orden, los diferentes géneros muestran una gran variedad de tolerancias a las condiciones ambientales. Por ejemplo, en los Heptageniidae, el género Epeorus está limitado a las aguas rápidas, limpias y bien oxigenadas, pero el género Stenonema puede encontrarse en ríos tibios, lentos y con alguna contaminación. En las familias Baetidae, Caenidae y Leptohyphidae, se encuentran tolerancias amplias a la temperatura y, hasta cierto punto, a la contaminación (Arrivillaga 2008).

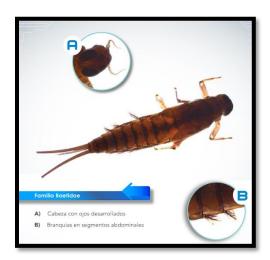


Figura 1 Orden Ephemeroptera fotografía por Córdova (2016)

3.4.7. Plecoptera

El orden Plecoptera ("Plecos"="Plegar", "Pteros"="Alas"), también conocido como moscas de la piedra, es un grupo relativamente pequeño de insectos. Las ninfas de la región centroamericana se conforman fácilmente por tener dos cercos terminales, branquias torácicas y un par de uñas en cada pata. Morfológicamente, tienden a ser confundidas con las efímeras (Ephemeroptera), pero se diferencian de éstas usando una combinación de las características mencionadas anteriormente (Gutiérrez, 2010).

Importancia

Al igual que la mayoría de insectos acuáticos, los plecópteros juegan un papel fundamental en el flujo de energía y reciclaje de nutrimentos hacia el sistema terrestre y en las cadenas tróficas dentro del sistema acuático, la producción anual de 13 especies de plecópteros en un río en Oklahoma (EEUU) y determinaron que fue de 6.1gm -2 (Gutiérrez, 2010).

Algunos plecópteros, principalmente los más grandes, han sido utilizados por los pescadores profesionales, como modelos en la fabricación de anzuelos para pesca deportiva. También han sido sujetos de importantes estudios biogeográficos y evolutivos (Gutiérrez, 2010).

Otra característica importante que poseen los plecópteros es su respuesta a cambios en el ambiente, ya que su sensibilidad generalmente los convierte en indicadores de excelente calidad del agua. Esta situación hace que se les incorpore en índices biológicos de calidad de aguas superficiales. En la mayoría de los índices, los plecópteros están dentro de los organismos más sensibles a los impactos negativos en el ambiente (Gutiérrez, 2010).

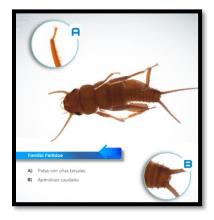


Figura 2 Orden Plecoptera fotografía por Córdova (2016)

3.4.8. Trichoptera.

El orden Trichoptera (en inglés llamado "caddisflies") pertenece al grupo de órdenes de insectos, en los cuales la totalidad de las especies depende del medio acuático para su desarrollo. Los tricópteros son insectos holometábolos que están relacionados con los lepidópteros y los adultos asemejan pequeñas polillas. Sin embargo, sus piezas bucales no forman una proboscis, aunque poseen palpos bien desarrollados. Sus alas están cubiertas de pelos en lugar de escamas (aunque hay excepciones), característica que le da el nombre al orden (trichos: pelos; ptera: alas).

Muchas especies de tricópteros poseen antenas sumamente largas y en reposo las alas se mantienen a menudo dobladas en forma de techo encima del cuerpo. El tamaño de los adultos varía entre 2 a 30mm, y la mayoría son de colores oscuros (café-negros), aunque las especies de algunos géneros poseen colores claros (blanco, amarillo o verde). También hay especies de varias familias (p.ej. Leptoceridae, Calamoceratidae, Hydropsychidae), que presentan coloraciones un poco más llamativas, con distintos patrones de manchas en sus alas (Springer, 2010).

Importancia

En los ambientes acuáticos, especialmente ríos y quebradas, los tricópteros juegan papeles ecológicos importantes. Tanto los adultos, como las larvas son importantes presas para una variedad de organismos acuáticos y terrestres, incluyendo peces, ranas, aves, murciélagos y arañas. Las larvas participan básicamente de todos los procesos ecológicos.

Especies raspadoras consumen algas y participan en el control de la productividad primaria. Los fragmentadores de hojarasca juegan un papel importante haciendo este material disponible a otros consumidores, mientras que los filtradores agrupan partículas finas y producen otras más grandes que pueden ser consumidas por recolectores. Sin embargo, en el cultivo de arroz, en Asia, también existe una especie considerada como plaga (Springer, 2010).

Debido a su gran diversidad y el hecho que las larvas poseen distintos rangos de tolerancia, según la familia o el género al que pertenecen, son muy útiles como bioindicadores de la calidad de agua y la salud del ecosistema. La gran mayoría de las especies son sensibles a la contaminación del agua y a la alteración de su hábitat, incluyendo las zonas de las riberas. Por lo tanto, es uno de los tres órdenes incluidos en el índice "EPT" (Ephemeroptera, Plecoptera, Trichoptera), que son considerados como los de mayor sensibilidad (en la mayoría de sus especies), entre todos los macroinvertebrados acuáticos (Springer, 2010).

Aprovechando su hábito de construir estuches y casas, se han utilizado las larvas de varias especies para la producción de piezas de joyería fina. Se colocan las larvas en peceras con piedras preciosas u otro material selecto, el cual es utilizado por las larvas para la construcción de su capullo pupal; una vez que la pupa emerge, se recogen las casitas vacías y se elaboran collares, aretes o brazaletes con ellos (Springer, 2010).

Figura 3 Orden Trichoptera fotografía por Córdova (2016)

3.4.9. Diptera

Holometábolos. Aunque es principalmente terrestre, este orden contiene más especies dulceacuícolas que cualquier otro grupo de macroinvertebrados (sobre todo en la familia Chironomidae). Hay alrededor de 100 familias de moscas, de las cuales aproximadamente 20 tienen especies acuáticas; más o menos la mitad de estas familias contienen exclusivamente (o casi exclusivamente) especies acuáticas mientras que la otra mitad incluyen especies acuáticas y terrestres.

Las larvas y a menudo las pupas también son estadios acuáticos. Los dípteros acuáticos habitan en más tipos de agua que cualquier otro grupo de insectos, su biología es sumamente diversa y las larvas son muy variables en su morfología, aunque nunca poseen patas verdaderas (articuladas) en el tórax (Pérez 2016).

Figura 4 Orden Diptera fotografía por Córdova (2016)

3.4.10. Odonata

Esta orden engloba a los conocidos como libélula y también a los caballitos del diablo. Los adultos no se ven obligados a vivir en las inmediaciones del agua, pero las larvas son acuáticas sin excepción.

Las larvas de todas las especies de odonatos son zoófagas, ya que atacan a diferentes animales con los que comparten territorios, como oligoquetos, efemerópteros, o dípteros e incluso pueden llegar a atacar a renacuajos y alevines de peces. Pueden vivir en una amplia variedad de hábitats, pero son más frecuentes en las zonas con poca velocidad de corriente de los cursos fluviales, como remansos o en pequeñas lagunas (Ladrera 2012).

Figura 5 Orden Odonata Fotografía por Córdova (2016)

3.4.11. Coleóptera

Los coleópteros (escarabajos) son un grupo de insectos que incluyen animales muy diversos, por su morfología y su ecología. Esto hace que algunos grupos posean adaptaciones morfológicas especiales para la vida acuática. Ocupan virtualmente cualquier hábitat incluidos los de agua dulce, aunque su presencia en ambientes marinos es mínima. Entre coleópteros acuáticos existen especies adultos y larvas, y otras donde sólo una de las dos fases vive en el agua. Presentan una fase intermedia entre la larva y el adulto, denominada pupa, la cual casi siempre es terrestre (Oscoz 2009).

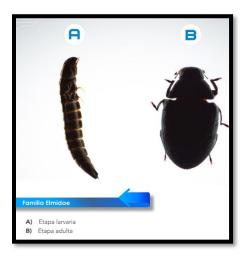


Figura 6 Orden Coleoptera Fotografía Por Córdova (2016)

Según investigaciones anteriores usando el índice de ETP se obtuvieron los siguientes resultados: La evaluación de la calidad del agua para cada río y su respectiva clasificación según los parámetros biológicos. Por otro lado, el Yeguare es considerado como un río de calidad regular, mientras tanto, la quebrada Gallo presenta mala calidad (Pérez 2016).

De igual manera se realizó un monitoreo en la quebrada Chambag la cual corresponde entre los 2013 y 2046 msnm la cual se realizó entre los meses de Agosto y Diciembre se evaluaron

los parametros fisicoquímicos como ser el caudal, temperatura pH, conductividad eléctrica, DBOs y oxígeno disuelto.

En cuanto al muestreo de macroinvertebrados bentónicos realizado en la quebrada Chambag dentro de los 5 puntos seleccionados durante los meses de agosto, diciembre del 2016 y marzo del 2017 se han identificado 8 órdenes y 17 familias, donde el mayor número de familias encontradas pertenecen a las ordenes Ephemeroptera y Díptera con un total de 4, mientras en menor número pertenecen a las órdenes Tricladia, Trichóptera Annelida, y Gasterópoda con un total de 1, además en la fase se da a conocer el porcentaje correspondiente a cada familia registrada. Cabe señalar que la identificación se realizó por cada hábitat seleccionado de acuerdo a la guía de vigilancia ambiental de Cajamarca (Pérez 2016).

Se registró un total de 45 taxa de macroinvertebrados acuáticos a nivel de familia en la cuenca del Limari. Siendo este nivel taxonómico el utilizado para el desarrollo del índice multimétrico de la cuenca, el cual es usado frecuentemente para los indicadores biológicos. La clase Insecta tuvo la mayor representación con 27 familias, compuesta por los órdenes Ephemeroptera, Coleóptera, Megaloptera, Trichoptera, Plecóptera, Odonata, y Diptera. Los órdenes con mayor representatividad fueron Díptera y Trichoptera con 10 y 7 familias respectivamente. El resto de órdenes presentó entre 4 y 1 taxa (Pérez 2016).

Los resultados obtenidos en la investigación realizada en la Cuenca De Limarí en Chile, los valores de altitud de las localidades en estudio se encontraron entre los 2.018 y 165 m.s.n.m, esta amplia variación se explica por la compleja orografía de la cuenca y de Chile en general, la cual varía considerablemente entre zonas altas, medias y bajas. Los caudales registrados en la cuenca fueron en general bajos como era de esperar en época seca. Presentando el mayor caudal promedio en la subcuenca del río Grande con 0.90 m³/s (Álvarez 2007).

Al comparar los resultados a escala de cuenca y subcuenca se observó que en términos generales las familias con mayor abundancia y representatividad fueron prácticamente las

mismas, siendo Chironomidae (Clase Diptera) la familia con mayor abundancia y representatividad a nivel de cuenca y subcuenca. Además, una clara diferencia se observó en la parte más baja de la cuenca específicamente en la subcuenca del río Limari, la cual registró un aumento importante en la abundancia de Hydrobiidae (Clase Gastropoda).

Esta familia se registró en 12 localidades de la cuenca, pero su abundancia fue considerablemente mayor en la subcuenca del río Limarí con un 22,3% en relación a una abundancia < 1% registrada en las subcuencas de la zona media y alta de la cuenca. También el oligoqueto Naididae presentó un aumento de su abundancia > 5% en la subcuenca del río Limarí (Duarte 2017).

IV. MATERIALES Y MÉTODO

4.1. Descripción del área de estudio

El presente trabajo se llevó a cabo en la parte alta de la subcuenca del Río Wampu, ubicada en la Zona Sur de la Reserva del Hombre y Biosfera del Río Plátano (RHBRP), ubicada geográficamente en la jurisdicción del municipio de Dulce Nombre de Culmí en el departamento de Olancho, de septiembre a diciembre de 2022 Esta subcuenca pertenece a la cuenca del Río Patuca en el oriente de Honduras.

La precipitación media anual aproximada es de 2,972 mm (GEOTSY 2022). Los distintos puntos para realizar los diferentes análisis fueron los siguientes: Río Culuco, Río Wampu los mangos, Río Largo, Río Cacao, Quebrada Marañones, Quebrada Las Marias y Río Wampu Nueva esperanza estos puntos fueron colocados estratégicamente para poder cubrir y analizar los distintos cuerpos de agua (ver figura 7).

Dichos muestreos se realizaron una vez por semana cada jueves entre los meses de septiembre y diciembre, en un horario de 8:00 am a 5:00 pm (MI BIOSFERA-2021)

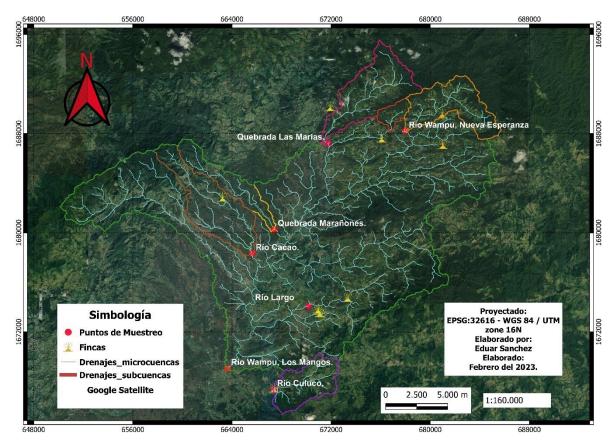


Figura 7 Ubicación geográfica de los puntos de muestreo.

4.2. Materiales y equipo utilizados.

Materiales	Equipo
Libreta.	GPS modelo eTrex 10 Garmin®
Lápices.	Termómetro
Frascos de Plásticos	Sondas Multiparamétricas HANNA®
Frascos Esterilizados	Microscopio.
Guantes de Latex	Estereoscopio.
Botas de Hule.	Computadora.
Lupas.	Turbidímetro.
	Software Quantum GIS (QGIS)®

4.3. Composición fisicoquímica en la red hídrica de la zona sur de la Biosfera del Río Plátano.

Para el análisis de la composición fisicoquímica de la red hídrica se hizo uso de sondas multiparamétricas marca HANNA® (H198195) para obtener los parámetros que fueron medidos en campo cada semana.

4.1.1. Conductividad eléctrica

Para determinar la conductividad eléctrica se utilizaron las sondas multiparamétricas marca HANNA® (H198195) (ver figura 8) Dicho equipo fue calibrado cada 30 días para obtener datos más precisos, la solución con la que fue calibrado es HI9828-0.

El procedimiento para la toma de datos fue el siguiente: Se coloca la muestra en un vaso de precipitación de manera que el electrodo este cubierto por el nivel del agua, luego se espera por un minuto hasta que el equipo estabilice y se anota el resultado.

Figura 8 Sonda Multiparamétrica HANNA.

4.1.2. pH

El método utilizado es la sonda multiparamétrica marca HANNA® (H198195) (ver figura 8).

Para realizar la medición del pH primeramente se tomó una muestra en un vaso de precipitación, para posteriormente introducir el electrodo hasta que este quedará cubierto y finalmente esperar durante un minuto aproximado que el equipo estabilice para anotar el resultado.

4.1.3. Sólidos Disueltos Totales.

Se utilizó un equipo multiparamétrico marca HANNA® (HI98195) (ver figura 8).

Para medir este parámetro se realizó el siguiente procedimiento el cual consistió en colocar la muestra a analizar en un vaso de precipitación e introducir el electrodo para la medición de sólidos disueltos, una vez introducido esperar durante un minuto y anotar el resultado para luego ser analizado.

4.1.4. Oxígeno

El método utilizado es la sonda multiparamétrica marca HANNA® modelo (HI98193) (ver figura 9).

El procedimiento para medir el oxígeno disuelto primero consiste en colocar una muestra en un vaso de precipitación e insertar el electrodo hasta que este quede cubierto por el nivel del agua e iniciar la lectura durante un minuto mientras estabiliza el equipo para posteriormente anotar el resultado.

Figura 9 Oxímetro marca HANNA

- 4.4. Clasificación e identificación de la diversidad y riqueza de los macroinvertebrados bentónicos.
- 4.4.1. Método de recolección de muestras para clasificar los macroinvertebrados bentónicos.

Los puntos establecidos corresponden a las diferentes microcuencas, donde se identificaron actividades como fincas ganaderas y diversas actividades agrícolas en la zona. De igual forma, el análisis se realizó teniendo en cuenta el punto de desagüe de cada microcuenca, donde se consideró fácil acceso y actividad agrícola significativa.

Para la recolección de las muestras se utilizaron trampas, las cuales tienen una forma apropiada para la captura de macroinvertebrados bentónicos (ver figura 10), con el fin de capturar diferentes especies y luego ser analizadas. Estas trampas se distribuyeron uniformemente en cada uno de los diferentes puntos de muestreo, colocando dos trampas por punto y cuidando que estuvieran bien instaladas para evitar que se las llevara la corriente del río.

Cada trampa pesa aproximadamente 1 kilogramo y está hecha de malla y nylon para permitir el flujo de agua y facilitar la recolección de la hojarasca, donde se encuentran principalmente los organismos a clasificar.

Figura 10 Trampas para la captura de Macroinvertebrados Bentónicos

Las diferentes trampas se instalaron en el campo durante aproximadamente una semana. Una vez transcurrido el tiempo establecido, cada trampa se sustituía por una nueva y la muestra obtenida se transportaba en baldes de agua para evitar la muerte de los microorganismos y facilitar un mejor estudio e identificación. Se recolectó el mayor número posible de especies con el fin de determinar la calidad del agua a través de las especies encontradas.

El análisis se realizó en las instalaciones del Laboratorio de Biología de la Universidad Nacional de Agricultura (ver figura 11). Para la identificación de especies se utilizaron diversos manuales, como el "Manual de Monitoreo de Macroinvertebrados" (Reyes 2006). Se elaboró una matriz en el software Excel para registrar todos los datos recolectados tanto en campo como en laboratorio (ver anexo 3). Se utilizaron diferentes equipos como microscopios, estereoscopios, lupas, bandejas y pinzas para facilitar la identificación de los macroinvertebrados bentónicos.

Figura 11 Instalaciones y equipo del Laboratorio de Biología UNAG.

• Fechas en que se realizaron los muestreos en campo.

Cuadro 1 Fechas de muestreos realizados

		Número de muestreo y fecha.											
	2	28/10/202	7/11/2022	11/11/202	18/11/202	25/11/202	2/12/2022	8/12/ 2022	P	arám	netros I	Evalua	dos
Puntos de Muestreo		1	2	3	4	5	6	7	рН	CE	S.D.T	O. D	E.P.T
Río Culuco	Χ		Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	
Río Wampu Los Mangos	х		x	x	х	x	x	x	Х	Х	х	х	Х
Río Cacao	Х		Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ
Río Largo	Х		Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ
Quebrada Marañones	х		х	х	х	х	х	х	Х	Х	Х	Х	Х
Quebrada Las Marias	х		x	x	x	х	х	x	Х	Х	х	Х	Х
Río Wampu Nueva Esperanza		x	x	x	x	x	x	x	Х	Х	х	Х	

4.4.2.. Implementación del índice de EPT (Ephemeroptera, Plecóptera y Trichoptera), para conocer la condición del agua en le red hídrica.

Posteriormente de la recolección se procedió con ayuda de los instrumentos que contiene el kit de monitoreo, a la identificación de las muestras (ver figura 12). Estas se colocaron en bandejas blancas y haciendo uso de tarjetas, claves y lupas se lograron identificar a qué tipo de orden y familia pertenecen para así crear una matriz de datos en donde se refleja el número de individuos de cada especie para conocer la diversidad presente en esta red hídrica.

Figura 12 Equipos e instrumentos utilizados para la identificación de Macroinvertebrados Bentónicos.

Para calcular el EPT se elaboró una tabla o una matriz en Excel con el orden al que pertenecen, la familia o sea la riqueza, el lugar de cada punto de muestreo y el número de individuos encontrados (Figura 13) (abundancia). Luego de tener los datos recolectados se procedió a sacar los individuos que pertenecen a cada una de las principales órdenes para sumarlos y dividirlos entre el número total de todos los individuos a encontrar; de igual manera se tomaron fotos para poder evidenciar la presencia de especies capturadas y respaldar la información encontrada.

Fórmula para calcular el EPT

IEPT = (NEPT/NT de todos los individuos) * 100

Ephemeroptera + Plecoptera + Trichoptera * 100

Expresada Numero total de todos los individuos.

Con el resultado se sumaron las tres órdenes y luego se dividió con el número total de todos los individuos encontrados. Con los resultados de la división se procede a multiplicarlo por 100% para que este quede representando en porcentaje.

Donde

IETP = Índice EPT

NEPT = Número total de individuos EPT en la muestra

N= Número total de muestra

Cuadro 2 Clasificación de la calidad del agua según el índice de EPT

Calidad según Índice EPT	Rango (%)	Color
Muy Buena	75 – 100	
Buena	50 – 74	
Regular	25- 49	
Mala	0 - 24	

Figura 13 Especies identificadas de Macroinvertebrados Bentónicos.

4.4.3 Índice de Diversidad Biológica.

El índice de Shannon–Weaver se calcula a través de la siguiente formula:

$$H' = -\frac{k}{l} \varepsilon pilogpi$$
 $pi = \frac{ni}{N}$

Donde k es el número de categorías, pi es la proporción de observaciones encontradas en cada categoría, ni es el número de individuos por especie y N es el número total de individuos en una muestra (Brower et al, 1998).

Diversidad y Análisis de Correlación de las especies encontradas.

Se hizo uso del software PAST para conocer la diversidad específica de macroinvertebrados bentónicos existentes en los diferentes puntos de muestreo.

De igual manera, se hizo un análisis multivariado de componentes principales mediante el software InfoStat, ya que es una técnica estadística de síntesis de la información o reducción de la dimensión, con el objetivo de reducir o sintetizar los datos. Se realizó una

correlación de datos para conocer la correlación que hay entre el índice EPT, índice de biodiversidad de SHANNON y los parámetros fisicoquímicos.

V. RESULTADOS Y DISCUSIÓN

5.1.Resultados de parámetros fisicoquímicos evaluados.

5.2.1 Conductividad Eléctrica

En el caso de este parámetro, que fue analizado en los siete puntos de muestreo, la medición es necesaria para determinar la capacidad de transmisión de corriente eléctrica. En la figura 14 se observan los valores de conductividad eléctrica de los diferentes puntos de muestreo, oscilando entre 30-170 μS/cm. Como tenemos valores estables, se observa la capacidad de cada punto para transportar sustancias que provocan conductividad eléctrica. El valor de conductividad más alto se encontró en el punto número dos, Río Wampu Los Mangos, el cual se mantuvo alto durante toda la investigación. Esto se debe a que todos los arroyos y ríos desembocan en este río, trayendo consigo sustancias que causan o contribuyen a la conductividad eléctrica.

Estos altos valores de conductividad eléctrica están relacionados con las altas concentraciones de iones disueltos en el agua, que son ocasionados por diferentes actividades como la agricultura, así como elementos que tienen su origen en la disolución o meteorización de rocas y suelos (Duarte 2007).

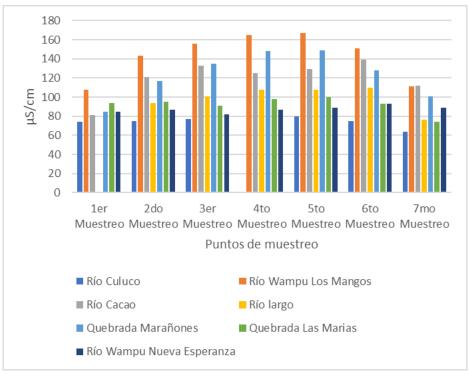


Figura 14 Conductividad Eléctrica para cada punto de muestreo.

5.2.2. Potencial de hidrogeno

Las concentraciones de iones hidrógeno fueron similares, encontrándose los valores más altos en el Río Wampu Nueva Esperanza. De acuerdo a Rojas (2012) la alcalinidad de las aguas superficiales está determinada generalmente por el contenido de carbonatos, bicarbonatos e hidróxidos, pero están dentro de los rangos generales de las mismas que van desde 6.5 y 8.5 de PH (Rojas 2012).

Factores que provocan un aumento de pH en estos cuerpos de agua tales como la entrada de substancias, así como los minerales de calcio y magnesio que provienen de las rocas, en estos cuerpos de agua dulce se encontró presencia de algas, las cuales al crecer y reproducirse usan CO₂ lo cual hace que el pH aumente (Watherboards 2017).

Figura 15 Parámetro de Potencial de Hidrogeno en los diferentes puntos de muestreo

5.2.3. Sólidos disueltos totales

En la figura 17, el comportamiento de este parámetro en los diferentes puntos de muestreo es variable, pero están dentro de los valores admisibles de la norma técnica de agua potable ya que su máximo es de 1000 mg/l (Norma técnica de agua potable, 1995).

El aumento de estos se debe al vertido de aguas de cocina por parte de las comunidades que están en el trayecto de los distintos cuerpos de agua. Según Rojas (2012) expresa que los sólidos disueltos totales pueden afectar adversamente la calidad de un cuerpo de agua de diversas formas. Aguas para el consumo humano con un contenido alto de los mismos no son de agrado para el paladar del humano (Sánchez 2017).

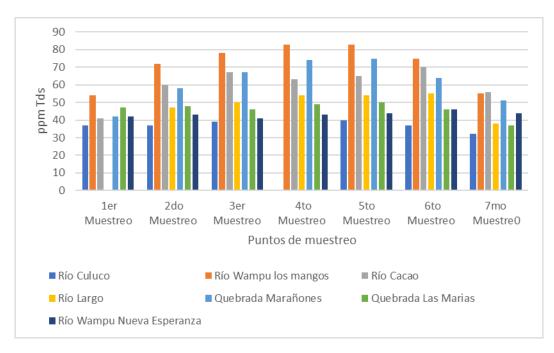


Figura 17 Sólidos Disueltos Totales para cada punto de muestreo

5.2.4. Oxígeno Disuelto

En la figura 18 se pueden observar los valores del oxígeno disuelto en los diferentes cuerpos de agua. Se puede apreciar que cuando la concentración se encuentra entre 5 y 6 ppm, hay suficiente oxígeno para la mayoría de las especies que habitan en estos ecosistemas acuáticos (Castillo 2008).

La concentración de este elemento es resultado del oxígeno que entra en el sistema y el que se consume por los organismos vivos. La entrada de oxígeno puede estar provocada por muchas fuentes, pero la principal es el oxígeno absorbido de la atmósfera. El oxígeno se agrega por la re-aireación y la fotosíntesis durante el día (Rodríguez, 2008).

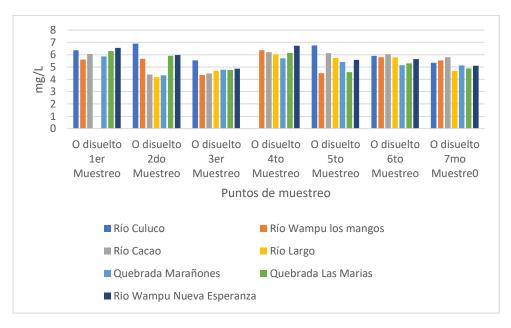


Figura 18 Oxígeno Disuelto para cada punto de muestreo

- 5.2.Diversidad y riqueza de los macroinvertebrados bentónicos
- 5.2.1. Clasificación de la población de macroinvertebrados bentónicos.

Cuadro 3 Especies capturadas durante la investigación.

Especies Capturadas	
	no. de
Especies	especies
Orden Coleópteras	188
Algas	189
Chinches de agua	99
Orden Plecoptera	165
Orden Ephemeroptera	150
Orden Díptero	120
Orden Trichoptera	175
Platelmintos	40

5.2.2. Muestreos realizados

En el primer muestreo se observó que los puntos Quebrada Las Marías y Río Culuco presentaron el mayor número de individuos, con un total de 41. Sin embargo, en el segundo punto de muestreo, Río Wampú Los mangos, no se encontraron insectos indicadores que permitieran determinar la calidad del agua.

En el segundo muestreo, específicamente en el punto Puente Río Wampu Los Mangos, se registró la ausencia de macroinvertebrados debido a diversas actividades realizadas aguas arriba, como la agricultura. Es importante destacar que estas actividades pueden tener un impacto negativo en la calidad del agua y en la diversidad biológica de los cuerpos de agua, lo que resalta la importancia de una gestión adecuada de los recursos hídricos y una planificación territorial que considere la protección y conservación del medio ambiente.

El punto donde se encontró mayor presencia de macroinvertebrados es en los puntos de muestreo, Rio Culuco y Quebrada Las Marías. En el tercer muestreo, en el punto dos, hubo ausencia de indicadores de buena calidad del agua debido a las actividades realizadas en la ribera. En el punto uno, hubo ausencia de macroinvertebrados debido a que no se pudo recolectar una muestra debido a las condiciones climáticas. De igual forma, en el punto dos hubo ausencia de macroinvertebrados. En el quinto muestreo, la mayor cantidad de macroinvertebrados bentónicos se recolectaron en los puntos cinco y seis, mientras que hubo ausencia de macroinvertebrados en el punto dos. En el sexto y último muestreo hubo ausencia de macroinvertebrados en la punta Río Wampu Los Mangos.

La relación entre las especies identificadas en cada uno de los diferentes muestreos realizados. Se puede observar que en el punto de muestreo número dos hubo ausencia de macroinvertebrados, mientras que en los demás puntos de muestreo se mantuvo la presencia de macroinvertebrados bentónicos identificados.

Nombre del punto	Ordenes EPT	EPT 1er Mues	EPT 2do Mues	EPT 3er Mues	EPT 4to Mues	EPT 5to Mues	EPT 6to Muestreo
Río Culuco	Plecoptera	7	9	10	0	10	9
	Ephemeroptera	7	9	8	0	4	5
	Trichoptera	6	8	6	0	10	5
Río Wampu Los Mangos	Plecoptera	0	0	0	0	0	0
	Ephemeroptera	0	0	0	0	0	0
	Trichoptera	0	0	0	0	0	0
Río Cacao	Plecoptera	4	8	8	8	9	0
	Ephemeroptera	10	8	8	7	6	0
	Trichoptera	0	6	9	6	9	0
Río Largo	Plecoptera	0	9	7	8	10	5
	Ephemeroptera	0	8	7	8	6	5
	Trichoptera	0	9	6	6	10	6
Quebrada Marañones	Plecoptera	9	9	9	8	6	9
	Ephemeroptera	9	6	9	8	4	5
	Trichoptera	0	4	10	4	6	5
Quebrada Las Marias	Plecoptera	6	8	8	8	9	9
	Ephemeroptera	6	8	8	6	8	5
	Trichoptera	9	10	6	8	9	5
Río Wampu Nueva Esperanza	Plecoptera	8	8	6	8	8	6
	Ephemeroptera	5	8	6	6	6	10
	Trichoptera	6	6	6	8	4	4

Figura 19 Datos de la identificación de individuos por cada punto de muestreo.

5.3. Índice EPT (Ephemeroptera, Plecoptera y Trichoptera)

5.3.1. EPT para el primer muestreo.

En la tabla de valores del índice EPT (Ephemeroptera, Plecoptera y Trichoptera) y la clasificación de calidad del agua en los puntos muestreados, se puede observar que, en el primer muestreo, el punto número tres presentó una moderada afectación. Esta situación se debe a las actividades agrícolas que se desarrollan en las orillas del cuerpo de agua.

Es importante señalar que la presencia de macroinvertebrados acuáticos como los EPT, es un indicador importante de la calidad del agua, ya que estos organismos son muy sensibles a los cambios en las condiciones del agua. Por tanto, los resultados obtenidos sugieren la necesidad de implementar medidas de conservación y protección de los recursos hídricos, especialmente en zonas donde las actividades humanas pueden tener un impacto negativo en la calidad del agua.

Cuadro 4 Clasificación de la calidad del agua según el índice EPT para el primer muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	50 %	Buena	
Río Wampu Los Mangos	0%	Mala	
Río Cacao	65.5%	Buena	
Río Largo	Na	na	
Quebrada Marañones	50 %	Buena	
Quebrada Las Marias	65.6 %	Buena	
Río Wampu Las Marias	49.71 %	Regular	
Nueva Esperanza			

5.3.2. EPT para el segundo muestreo

Con los resultados obtenidos en el muestreo, se puede observar que se obtuvieron mejores resultados y en el punto dos se observa la ausencia de macroinvertebrados debido al alto grado de contaminación que hay en este, siendo el valor más bajo el (0) % lo cual nos dice que la calidad del agua esta levemente impactada.

Cuadro 5 Clasificación de la calidad del agua según el índice EPT para el segundo muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	46.42 %	Regular	
Río Wampu Los Mangos	0%	Mala	
Río Cacao	68.75%	Buena	
Río Largo	50 %	Buena	
Quebrada Marañones	51.35 %	Buena	
Quebrada Las Marias	72.22 %	Buena	
Río Wampu Las Marias	47.82 %	Regular	
Nueva Esperanza			

5.3.3. EPT para el tercer muestreo.

Los resultados arrojados para el tercer muestreo se logran observar que el numero dos sigue teniendo ausencia de macroinvertebrados debido a la calidad del agua analizada, se mantienen en los parametros entre el 45% y el 70% teniendo un impacto leve en los demás puntos de muestreo.

Cuadro 6 Clasificación de la calidad del agua según el índice EPT para el tercer muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	54.54 %	Buena	
Río Wampu Los Mangos	0%	Mala	
Río Cacao	55.55%	Buena	
Río Largo	66.66 %	Buena	
Quebrada Marañones	73.68 %	Buena	
Quebrada Las Marias	52.38 %	Buena	
Río Wampu Las Marias	47.36 %	Regular	
Nueva Esperanza			

5.3.4. EPT para el cuarto muestreo

Se observa que en el punto número uno hay ausencia de macroinvertebrados debido a problemas mecánicos de igual manera el punto numero dos sigue teniendo ausencia de macroinvertebrados debido a la mala calidad de agua que hay en este cuerpo de agua. Se siguen manteniendo los valores de la calidad del agua gracias a la presencia de macroinvertebrados.

Cuadro 7 Clasificación de la calidad del agua según el índice EPT para el cuarto muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	0 %		
Río Wampu Los Mangos	0%	Mala	
Río Cacao	51.91 %	Buena	
Río Largo	52.38 %	Buena	
Quebrada Marañones	50 %	Buena	
Quebrada Las Marias	52.38 %	Buena	
Río Wampu Las Marias	52.39 %	Buena	
Nueva Esperanza			

5.3.5. EPT para el quinto muestreo

Se observa en el punto numero dos la ausencia de macroinvertebrados debido a la baja calidad de agua en este río, de igual forma en los demás puntos se mantienen los buenos porcentajes de macroinvertebrados bentonicos capturados lo que nos permite deducir la buena calidad de agua en estos cuerpos de agua.

Cuadro 8 Clasificación de la calidad del agua según el índice EPT para el quinto muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	54.54 %	Buena	
Río Wampu Los Mangos	0%	Mala	
Río Cacao	54.54 %	Buena	
Río Largo	56.52 %	Buena	
Quebrada Marañones	44.44 %	Regular	
Quebrada Las Marias	55.55 %	Buena	
Río Wampu Las Marias	64.28 %	Buena	
Nueva Esperanza			

5.3.6. EPT para el sexto muestreo

En este análisis se puede observar nuevamente en el punto numero dos la ausencia de macroinvertebrados debido a las actividades realizadas en el río Wampu, de tal manera los valores de los demás puntos de muestreo se mantienen entre los rangos establecidos obteniendo un impacto leve en los demás cuerpos de agua.

Cuadro 9 Clasificación de la calidad del agua según el índice EPT para el sexto muestreo.

Puntos de Muestreo	EPT	Condición	Color
Río Culuco	51.28 %	Buena	
Río Wampu Los Mangos	0%	Mala	
Río Cacao	0 %		
Río Largo	51.61 %	Buena	
Quebrada Marañones	65.51 %	Buena	
Quebrada Las Marias	48.71 %	Regular	
Río Wampu Las Marias	50 %	Buena	
Nueva Esperanza			

5.4.Índice de Shannon Weaver.

Los resultados obtenidos muestran una baja diversidad de especies en los seis muestreos realizados, debido a que los valores obtenidos varían entre 0.5 y 1, por debajo de los rangos considerados normales, que oscilan entre 2 y 3. Es importante destacar que valores inferiores a 2 se consideran bajos en diversidad, mientras que valores superiores a 3 indican una alta

diversidad de especies. Esta disminución en la diversidad puede ser atribuida a la intervención humana en los puntos de investigación. En particular, el punto número dos muestra el mayor impacto debido a las actividades humanas que alteran las condiciones del agua, incluyendo la presencia de indicadores de contaminación moderada, principalmente atribuidos a las actividades agrícolas y al uso de diferentes productos químicos (Barrera 2015).

Cuadro 10 Índice de SHANNON para cada punto de muestreo.

Puntos de Muestreo	Índice de Shannon muestreo N.º 1	Índice de Shannon muestreo N.º 2	Índice de Shannon muestreo N.º 3	Índice de Shannon muestreo N.º 4	Índice de Shannon muestreo N.º 5	Índice de Shannon muestreo N.º 6
Río Culuco	0.65	0.60	0.55	0	0.56	0.62
Río Wampu Los Mangos	0.16	0.17	0	0	0	0.17
Río Cacao	0.42	0.48	0.58	0.59	0.56	0
Río Largo	0	0.60	0.43	0.63	0.63	0.47
Quebrada Marañones	0.56	0.39	0.68	0.56	0.33	0.60
Quebrada Las Marias	0.69	0.60	0.49	0.63	0.63	0.60
Río Wampu Nueva Esperanza	0.60	0.48	0.38	0.63	0.38	0.64

5.5. Análisis estadístico multivariado.

Los vectores representados en el análisis de componentes principal, el Punto Río Wampú Los Mangos está caracterizado por sólidos disueltos totales y conductividad eléctrica ya que este cuerpo de agua en donde desembocan las demás quebradas y ríos arrastrando consigo distintas sustancias que favorecen a los S.D.T y C.E, Rio Wampu Nueva Esperanza esta caracterizados por el O.D, el Índice de EPT y Diversidad de SHANNON ya que los valores

de Oxigeno son estables lo cual contribuye a la presencia de vida acuática y la diversidad de especies en este cuerpo de agua.

Los vectores de SHANNON y EPT están muy relacionadas ya que ambas son las que representan la diversidad de especies y especies identificadas durante la investigación, de igual forma solidos disueltos totales y conductividad eléctrica están relacionados principalmente por las sustancias presentes en estos ríos como las sales presentes en estos cuerpos de agua.

Vector de Oxígeno disuelto y Temperatura son vectores independientes, vector de temperatura con EPT y SHANNON estos ejercen una función de espejo, teniendo al Río Wampu Nueva Esperanza caracterizado por Índice de EPT en tener altos valores de especies capturadas, así como alto porcentaje de biodiversidad, pero teniendo bajas temperaturas en los cuerpos de agua.

Para la CP 1 los vectores que tienen más peso para su construcción son temperatura, sólidos disueltos, conductividad eléctrica y pH.

Para la CP2 los vectores con mayor aporte son Oxígeno disuelto, EPT y SHANNON son los que realizan una mayor aportación a la CP 2

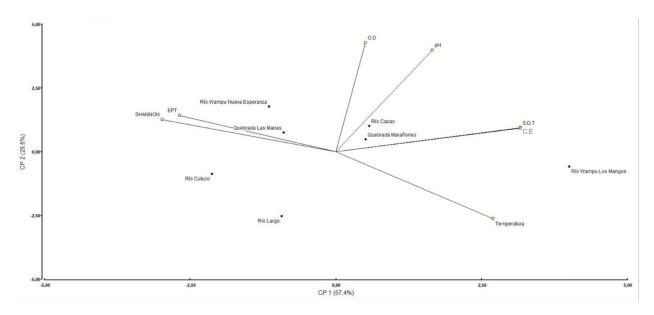


Figura 20 Componentes Principales

5.5.1. Curvas de acumulación de especies

Los datos obtenidos en la curva de acumulación de especies indican que para el eje "y" es el número de especies capturadas e identificados y para el eje "x" la tasa o el número de especies que se van ganando conforme aumenta el número de cada uno de los puntos de muestreo. En la figura 21 las curvas de color, rojo las cuales se sobreexponen nos muestran que durante estos muestreos realizados ningún punto fue más diverso que las especies encontradas y capturadas, por lo cual las especies entre cada uno de los distintos puntos son aproximadamente las mismas y las curvas de color azul por otra parte reflejan la varianza entre puntos.

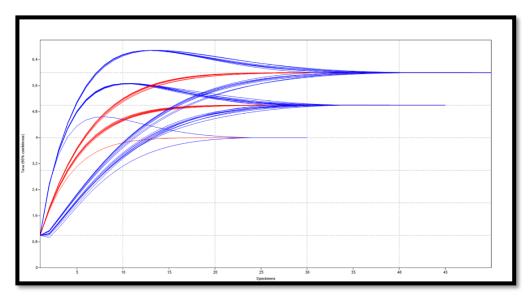


Figura 21 Curva de acumulación de especies durante la investigación

Para analizar las distintas curvas de especies para cada uno de los puntos de muestreo, se dividieron los puntos tomando la posición de la subcuenca siendo estos puntos de la parte alta, media y baja.

En la figura 22 se ven reflejados los distintos puntos de muestreo, donde tenemos que para Quebrada Las Marías y Río Wampu Nueva Esperanza presentan valores similares debido a su ubicación, por tanto, se obtuvieron las mismas especies y el mismo número aproximado de especies capturadas en ambos puntos

Los puntos de Quebrada Marañones y Río Cacao presentan valores similares tanto en número de especies capturadas, así como las mismas especies encontradas en ambos puntos, esto debido a su posición dentro de la subcuenca. A diferencia de Río Largo este presenta valores bajos con respecto a los demás muestreos esto se debe a que este punto se encuentra cercano a donde realizan actividades ganaderas provocando su deterioro ambiental.

Río Culuco presenta valores aceptables debido a su buena calidad de agua permitiendo la presencia de distintas especies a diferencia de Río Wampu Los Mangos este refleja una baja presencia de especies esto relacionado a las actividades realizadas rio arriba, también que los

demás cuerpos de agua desembocan en este Río arrastrado consigo sustancias que deterioran la calidad de este cuerpo de agua.

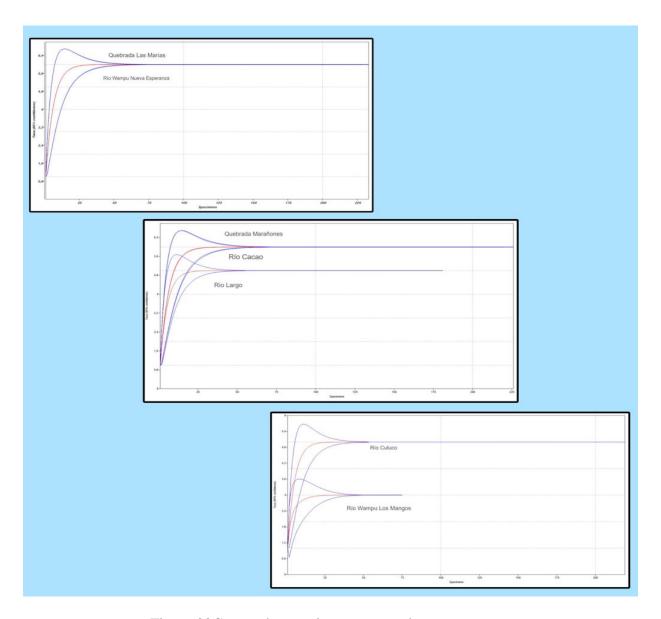


Figura 22Curvas de especies por punto de muestreo.

Las curvas de acumulación de especies durante toda la investigación la cual nos permiten dar fiabilidad a los inventarios biológicos de igual forma una mejor planificación del trabajo sobre el muestreo asimismo extrapolar el número de especies para estimar el total de especies

presentes en cada cuerpo de agua. La curva de acumulación de especies es útil para evaluar la calidad del muestreo, así como la relación entre el esfuerzo por cada muestreo y el número de especies encontrados en cada punto de muestreo (Hortal 2000).

CONCLUSIONES

La composición fisicoquímica de esta red hídrica dio como resultado que tenemos condiciones adecuadas aceptables, a excepción del Rio Wampu el cual es considerado de mayor efecto

A nivel biológico el índice de Shannon Weaver se determinó que en la mayoría de los puntos de muestreo presentan una baja diversidad específica, siendo el punto más afectado el punto Río Wampu Los Mangos.

Con el índice EPT, se determinó que el punto Río Wampu Los Mangos presenta un alto grado de intervención antropogénica, ya que los indicadores encontrados durante el análisis eran de baja calidad de agua teniendo ausencia de macroinvertebrados, mostrando un desequilibrio ecologico.

La red hídrica de la zona sur de la RHBRP esta levemente impactada según el índice de EPT y la información obtenida con los parámetros fisicoquímicos a excepción del Río Wampu Los Mangos debido a las diferentes acciones realizadas y a los distintos cuerpos de agua que desembocan en este ocasionando la mala calidad del agua.

El análisis de componentes muestra que las concentraciones de sólidos disueltos totales tienen un impacto directo sobre la vida acuática, al tener mayores porcentajes de sales en el agua la diversidad de especies disminuye ya que las condiciones no son óptimas para la vida acuática y la salud de los cuerpos de agua, lo que implica que los cuerpos de agua de la red hídrica están bajo un cierto grado de vulnerabilidad.

RECOMENDACIONES

Dar continuidad al estudio con la implementación de biomonitoreo de manera continua para conocer mejor la variabilidad de la calidad de agua durante el transcurso del año y ver como los factores del tiempo y clima afectan a las comunidades acuáticas.

Integrar el uso de macroinvertebrados acuáticos en estudios de calidad de agua a la carrera de IGIRN, y así aportar a esta metodología creciente y popular en el área ambiental.

Trabajar con organizaciones que se enfoquen en la conservación del ambiente y así poder cuidar el recurso hídrico en esta zona.

Realizar planes de acción para el control de descargas de aguas residuales, así como los desechos de las plantas lácteas ubicadas en la zona.

Desarrollar un plan integral para la gestión de las comunidades que están dentro de esta red hídrica con la finalidad de obtener información y resolver problemas que ayuden a mejorar la situación de la misma.

BIBLIOGRAFIA

Albert Pérez. 2016. GUIA DE MACROINVERTEBRADOS BENTONICOS DE LA PROVINCIA DE ORELLANA. 3:01–120.

Alejandra Garvacho. 2012. Estudio de las comunidades de macroinvertebrados y desarrollo de un índice multimétrico para evaluar el estado ecologico . :01–70.

Álvarez Sergio. 2007. Evaluación de la calidad de agua mediante la utilización de macroinvertebrados acuáticos en la subcuenca del Yeguare, Honduras. .

Aplicación de los Isótopos ambientales en hidrogeología. 2022. (en línea, sitio web). Consultado 3 May 2022.

Arrivillaga. 2008. Macroinvertebrados bentónicos como bioindicadores de salud ambiental.

Carvacho Alejandra. 2012. estudio de las comunidades de macroinvertebrados bentonicos y desarrollo de un índice multimétrico para evaluar el estado ecologico de los rios de la cuenca del limari en chile.

Conrrado.M. (2015). Plan de Manejo Reserva del Hombre y la Biosfera del Rio Plátano. s.l., s.e.

Dante Romero. 2017. evaluación de la calidad del agua utilizando macroinvertebrados bentonicos como indicadores bioticos en la quebrada chambag. .

Duarte, J. (2017). Macroinvertebrados bentonicos y su relación con la calidad del agua en la cuenca alta del rio Frio (online). Bogotá, s.e. Consultado 3 Jun. 2022. Available at.

Duarte Julian. 2017. Macroinvertebrados bentónicos y su relación con la calidad del agua en la cuenca alta de del Río Frío. .

Facundo Castillo, JR. n.d. HIDROGEOQUIMICA E HIDROLOGIA ISOTOPICA Parte 4. Hidrología Isotópica. . Consultado 3 May 2022.

Figueroa, R; Valdovinos, C; Araya, E; Parra, O. 2003. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile (online). Revista chilena de historia natural 76(2):275–285.

Figueroa Ricardo. 2003. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. .

Francisco guerrero. 2003. Los macroinvertebrados bentónicas de pozo azul (cuenca del rio Gaira, Colombia) y su relación con el caudal del agua. 3.

Gallozo Alex. 2017. MACROINVERTEBRADOS ACUÁTICOS COMO BIOINDICADORES DE LA CALIDAD DEL AGUA, RELACIONADOS CON METALES PESADOS EN LA SUB CUENCA YANAYACU - ANCASH,..

Henry Sanchez. 2017. Escuela profesional de educación ambiental. :2–109.

Josué David Matute Aguilar. 2014. La incidencia de la política pública en conservación en la comunidad de Bonanza, zona sur de la Biósfera del Río Plátano, Honduras. 1:01–212.

Julian Duarte. 2017. macroinvertebrados bentónicos y su relación con la calidad del agua en la cuenca alta de del Río Frío (Tabio, Cundinamarca). 2:01–78.

Julio Chervalier. 2006. Variación de la comunidad de macroinvertebrados bentonicos en relación con la calidad de las aguas. .

Kirk P. Rodgers. 2000. Honduras - Proyecto de Manejo de los Recursos Naturales Renovables de la Cuenca del Embalse el Cajón. Tegucigalpa, s.e. 01–195. p.

Lilian Hernández. 2009. "MACROINVERTEBRADOS BENTÓNICOS, INDICADORES DE LA CALIDAD ECOLÓGICA DEL AGUA EN DOS RÍOS DE LIMA CON DISTINTAS ACTIVIDADES PRODUCTIVAS." :03–104.

Matamoros Danilo. 2016. determinacion de la calidad del agua y monitoreo de macroinvertebraados bentonicos en la microcuenca del rio neteapa en el municipio de moroceli, el paraiso. .

MI BIOSFERA. 2021. Primer Informe de ejecución Presupuesto Programa - Coejecutores. .
Nancy Diersing. 2000. La calidad de las aguas. 01.

Pacheco Alda.. 2016. Determinacion de las condiciones de agua del rio talgua mediante parametros fisico quimicos microbiologicos y monitoreo de macroinvertebrados bentonicos.

Parra Oscar. 2003. Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. .

Paulo Morales. 2006. Macroinvertebrados bentónicos como indicadores de calidad del agua en la represa Santa Bárbara, Pelotas, RS, Brasil . .

Ramírez, S. 2018. Determinación de la calidad del agua del río Frío (Cundinamarca, Colombia) a partir de macroinvertebrados bentónicos.

Reserva de la biosfera de Río Plátano, Honduras: Tiempo y clima - Geotsy. 2022. (en línea, sitio web). Consultado 22 Jul. 2022.

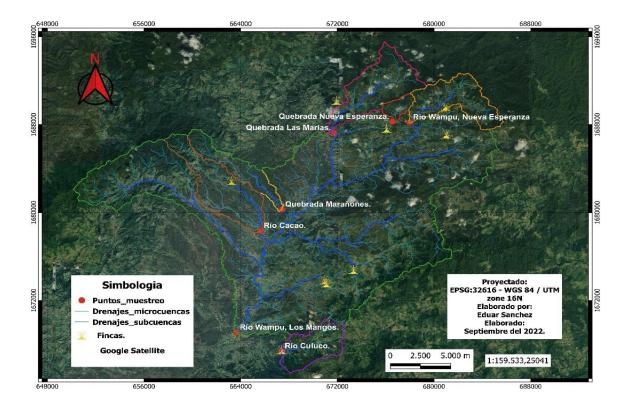
Riesgo de contaminación del agua subterránea con plaguicidas en la cuenca del arroyo El Cardalito, Argentina. 2022. (en línea, sitio web). Consultado 27 Apr. 2022.

Rosa Reyes. 2008. Macroinvertebrados bentónicos como bioindicadores de salud ambiental. 04.

Ruiz Darwin. 2019. MACROINVERTEBRADOS BENTONICOS COMO INDICADORES DECALIDAD DE AGUA EN EL RIO KITAMAYO-PISAC-CUSCO. .

Santiago López. 2018. Macroinvertebrados acuáticos como indicadores de calidad del agua del río Teusacá. .

Sergio Álvarez. 2007. Evaluación de la calidad de agua mediante la utilización de macroinvertebrados acuáticos en la subcuenca del Yeguare, Honduras. :01–69.


Silvia Echeverria. 2022. Deterioro de la integridad ecológica y fragmentación del hábitat para comunidades de macroinvertebrados neotropicales en una corriente agrícola. .

Springer Mónica. 2010. Revista de Biología Tropical. .

Tobón-Marulanda, FÁ; López-Giraldo, LA; Paniagua-Suárez, RE. 2010. Contaminación del agua por plaguicidas en un área de Antioquia. Revista de Salud Pública 12(2):300–307.

ANEXOS

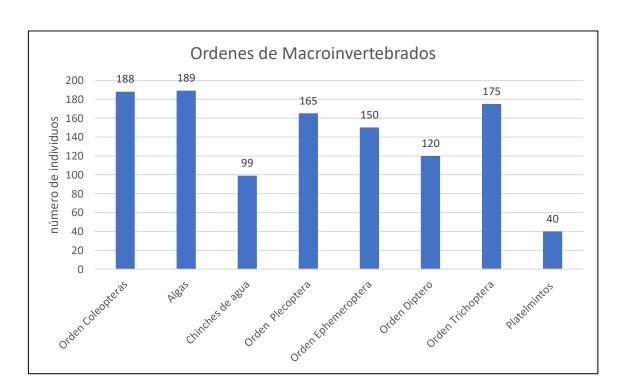
Anexo 1 Ubicación Geográfica donde se desarrolló la investigación.

Anexo 2Conductividad Eléctrica

	Conductividad Eléctrica.							
Nombre del	1er	2do	3er	4to	5to	6to	7mo	
Punto	Muestre	Muestre	Muestre	Muestre	Muestre	Muestre	Muestre	
	0	0	0	0	0	0	0	
Río Culuco	74	75	77	0	80	75	64	
Río Wampu los	108	143	156	165	167	151	111	
mangos								
Río Cacao	81	121	133	125	129	139	112	
Río largo	0	94	101	108	108	110	76	
Quebrada	85	117	135	148	149	128	101	
Marañones								
Quebrada Las	94	95	91	98	100	93	74	
Marias								
Río Wampu	85	87	82	87	89	93	89	
Nueva Esperanza								

Anexo 3 Potencial de Hidrogeno

	рН						
Nombre del	1er	2do	3er	4to	5to	6to	7mo
Punto	Muestre						
	0	0	0	0	0	0	0
Río Culuco	8,10	7,70	7,13		7,92	7,90	7,69
Río Wampu los mangos	8,04	7,65	6,97	8,11	7,99	8,01	7,85
Río Cacao	8,15	7,52	6,86	8,12	7,91	7,78	7,8
Río largo	0	7,56	6,71	7,86	7,89	8,03	7,9
Quebrada Marañones	8,15	7,57	6,7	7,87	8,02	8,06	8,2
Quebrada Las Marias	8,17	7,67	6,5	7,91	7,91	8,14	7,9
Río Wampu Nueva Esperanza	7,42	7,62	7,9	7,86	8,07	8,9	7,9


Anexo 4 Solidos Disueltos Totales

Solidos Disueltos Totales							
Nombre del	1er	2do	3er	4to	5to	6to	7mo
punto	Muestre						
	0	0	0	0	0	0	0
Río Culuco	37	37	39		40	37	32
Río Wampu los	54	72	78	83	83	75	55
mangos							
Río Cacao	41	60	67	63	65	70	56
Río Largo	0	47	50	54	54	55	38
Quebrada	42	58	67	74	75	64	51
Marañones							
Quebrada Las	47	48	46	49	50	46	37
Marias							
Río Wampu	42	43	41	43	44	46	44
Nueva Esperanza							

Anexo 5 Oxígeno Disuelto

Oxígeno Disuelto							
Nombre del	1er	2do	3er	4to	5to	6to	7mo
punto	Muestre						
	0	0	0	0	0	0	0
Río Culuco	6,36	6,9	5,53		6,75	5,91	5,34
Río Wampu los	5,6	5,66	4,35	6,36	4,5	5,8	5,54
mangos							
Río Cacao	6,05	4,4	4,48	6,2	6,13	6,04	5,8
Río Largo	0	4,18	4,69	6,02	5,74	5,78	4,68
Quebrada	5,86	4,32	4,78	5,72	5,41	5,14	5,12
Marañones							
Quebrada Las	6,29	5,90	4,75	6,15	4,58	5,29	4,89
Marias							
Rio Wampu	6,56	5,98	4,87	6,73	5,59	5,64	5,11
Nueva Esperanza							

Anexo 6 Población de Macroinvertebrados identificados durante la investigación.

Anexo 7 Índice EPT

Nombre del	Ordenes	1er	2do	3er	4to	5to	6to
punto	EPT	Muestre	Muestre	Muestre	Muestre	Muestre	Muestre
		0	0	0	О	О	О
Río Culuco	Plecopter a	7	9	10	0	10	9
	Ephemer optera	7	9	8	0	4	5
	Trichopte ra	6	8	6	0	10	5
Río Wampu Puente	Plecopter a	0	0	0	0	0	0
	Ephemer optera	0	0	0	0	0	0
	Trichopte ra	0	0	0	0	0	0
Río Cacao	Plecopter a	4	8	8	8	9	0
	Ephemer optera	10	8	8	7	6	0
	Trichopte ra	0	6	9	6	9	0
Río Largo	Plecopter a	0	9	7	8	10	5
	Ephemer optera	0	8	7	8	6	5
	Trichopte ra	0	9	6	6	10	6
Quebrada Marañones	Plecopter a	9	9	9	8	6	9
	Ephemer optera	9	6	9	8	4	5
	Trichopte ra	0	4	10	4	6	5
Quebrada Las Marias	Plecopter a	6	8	8	8	9	9
	Ephemer optera	6	8	8	6	8	5
	Trichopte ra	9	10	6	8	9	5
Río Wampu Nueva Esperanza	Plecopter a	8	8	6	8	8	6
·	Ephemer optera	5	8	6	6	6	10
	Trichopte ra	6	6	6	8	4	4

Anexo 8 Matriz para la recolección de datos macroinvertebrados bentónicos

HOJA DE CAMPO #		
SITIO DE MUESTREO:	#5	
NOMBRE DEL RIO	Rio Wanpa	Nueva Eza
ECHA:	25 111 121	ot?
PERSONA ENCARGADA	Educa	PRINCIPLE OF THE PRINCI
CLASIFICACIÓN		
OLEOPTERA	ABUNDANCIA	EPT PRESENTES
PRESENCIA DE ALGAS	-	+5
CHINCHES DE AGUA	/	
PLECOPTERA	1	
EPHEMEROPTERA	-	410
DIPTERO		110
QUIMERO		
TRICHOPTERA		
PLENARIAS	-	+ 10
PLATELMITO		
PLACIOLA		
DTRA		
E-1191		
TOTAL	120	
EPT TOTAL + ABUNDANCIA TOTAL		Buena
75 - 100% Muy buena 50 - 74% Buena 25 - 49% Regular 0 - 24% Mala		

Anexo 9 Análisis de Componentes Principales

Análisis de componentes principales

Datos estandarizados Casos leidos 49 Casos omitidos 8

Variables de clasificación

puntos de muestreo

Matriz de correlación/Coeficientes

	рН	C.E	O.D	EPT	S.D.T	SHANNON	Temperatura
рН	1,00						
C.E	0,64	1,00					
O.D	0,76	0,21	1,00				
EPT	-0,09	-0,52	-0,04	1,00			
S.D.T	0,64	1,00	0,21	-0,52	1,00		
SHANNON	-0,15	-0,66	-0,04	0,95	-0,66	1,00	
Temperatura	-0,05	0,70	-0,48	-0,68	0,70	-0,75	1,00

Matriz de correlación/Probabilidades

	рН	C.E	O.D	EPT	S.D.T	SHANNON	Temperatura
рН							
C.E	0,1192						
O.D	0,0476	0,6455					
EPT	0,8540	0,2326	0,9354				
S.D.T	0,1220	<0,0001	0,6495	0,2351			
SHANNON	0,7548	0,1059	0,9403	0,0009	0,1079		
Temperatura	0,9232	0,0830	0,2781	0,0926	0,0821	0,0537	

Autovalores

Lambda	Valor	Proporción	Prop	Acum
1	4,02	0,57		0,57
2	2,07	0,30		0,87
3	0,80	0,11		0,98
4	0,08	0,01		1,00
5	0,02	3,5E-03		1,00
6	5,5E-05	7,9E-06		1,00
7	0,00	0,00		1,00

Autovectores

Variables	e1	e2
рН	0,24	0,58
C.E	0,47	0,14
O.D	0,07	0,63
EPT	-0,39	0,21
S.D.T	0,46	0,14
SHANNON	-0,44	0,18
Temperatura	0,40	-0,39

Correlaciones con las variables originales

Variables	CP 1	CP 2	
рН	0,49	0,84	1
C.E	0,93	0,20)
O.D	0,15	0,90)
EPT	-0,79	0,30)
S.D.T	0,93	0,20)
SHANNON	-0,88	0,27	7
Temperatura	0,79	-0,56	ŝ
Correlación	cofen	ética:	0,98