UNIVERSIDAD NACIONAL DE AGRICULTURA

COMBINACIÓN DE SUSTRATOS PARA LA PRODUCCIÓN DE PLÁNTULAS DE CACAO (Theobroma cacao L.)

POR:

CARLOS ABRAHAM JUÁREZ VELÁSQUEZ

INFORME FINAL

CATACAMAS OLANCHO

DICIEMBRE, 2023

COMBINACIÓN DE SUSTRATOS PARA LA PRODUCCIÓN DE PLÁNTULAS DE CACAO (Theobroma cacao L).

POR:

CARLOS ABRAHAM JUÁREZ VELÁSQUEZ

M.Sc JORGE ZAMIR ERAZO

Asesor Principal

INFORME FINAL

PRESENTADO A LA UNIVERSIDAD NACIONAL DE AGRICULTURA COMO REQUISITO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AGRÓNOMO

CATACAMAS OLANCHO

DICIEMBRE DE 2023

ACTA DE SUSTENTACIÓN

DEDICATORIA

A Dios, por estar presente en cada acto de mi vida, y concederme sus perdurables bendiciones que me han ayudado a alcanzar mis metas personales y profesionales.

A mi abuelo Jorge Juárez, quien me inculco buenos principios morales, y cuyas enseñanzas han sido luz y guía en todos los momentos importantes de mi existencia, con quien celebrare este triunfo tan importante para mí.

A mis padres Carlos Juárez y Kenia Velásquez por ese apoyo constante, por ese amor incondicional y por protegerme de las perturbaciones de la vida.

A mis tíos, y demás familiares, quienes de una u otra manera ayudaron a la culminación de este logro.

AGRADECIMIENTO

Agradezco a la universidad nacional de agricultura, en esta etapa de formación académica, a cada una de las cátedras de la carrera de ingeniería agronómica, quienes a través de su conocimiento y su experiencia, enriquecieron mi formación profesional.

Y con gratitud y respeto mis más sinceros y formal agradecimiento a mis asesores por el valioso apoyo que me han brindado con sus conocimientos en la temática de esta tesis.

De igual manera el apoyo incondicional a mis compañeros de ingeniera.

Y finalmente a mis compañeros de trabajo Ariel Borjas, Eugenio Bonilla, Juan Bobadilla, Juan Bustillo, que gracias a ellos estoy culminando esta desafiante etapa.

CONTENIDO

A	CTA DE SUSTENTACIÓNii
L	ISTA DE TABLASviii
L	ISTA DE ANEXOSix
R	ESUMENx
I.	INTRODUCCIÓN1
II	. OBJETIVOS2
	2.1 Objetivo General
	2.2 Objetivos Específicos
II	I. REVISIÓN DE LITERATURA3
	3.1 El Cacao (<i>Theobroma cacao</i> L.)
	3.2 Origen e historia
	3.3 Variedades del cacao
	3.4 Clasificación taxonómica del cacao
	3.5 Producción mundial del Cacao
	3.6 Producción regional del Cacao
	3.7 Producción Nacional del Cacao9
	3.8 El suelo
	3.9 Suelo Común
	3.10 Sustrato
	3.10.1 Clasificación de los sustratos
	3.11 Combinaciones compuestas comerciales
	3.12 Propiedades de los sustratos
	3.12.1 Propiedades mecánicas
	3.12.2 Propiedades físicas
	3.12.3 Propiedades y caracterización física de los sustratos
	3.13 Densidad real
	3.14 Densidad aparente

3.15 Porosidad total	15
3.16 Tipos de sustratos minerales naturales	16
3.16.1 Arena y grava	16
3.16.2 Rocas volcánicas	17
3.17 Sustratos minerales tratados	17
3.17.1 Perlita	17
3.17.2 Vermiculita	17
3.17.3 Arcilla expandida	18
3.17.4 Lana de roca	18
3.17.5 Residuos industriales	18
3.18 Sustratos orgánicos naturales	19
3.18.1 Turba	19
3.18.2 La fibra de coco	19
3.18.3 Cascarilla de arroz	19
3.18.4 Compostaje	20
3.18.5 La corteza de pino	20
3.18.6 Cortezas de maderas duras	20
3.18.7 Gallinaza	21
3.19 Sustratos Compuestos comerciales	21
3.19.1 Pro-Mix	21
IV. MATERIALES Y MÉTODO	22
4.1 Descripción del lugar	22
4.2 Materiales y Equipo	22
4.3 Preparación de los tratamientos	22
4.3.1 Colecta de Semillas	23
4.3.2 Tratamientos a evaluar	23
4.3.3 Aleatorización	23
4.4 Diseño experimental	24
4.5 Variable a Evaluar	24
V. RESULTADOS Y DISCUSIÓN	26
5.1 Resultados de la clorofila de la planta	26

5.2 Resultados del diámetro de la planta	27
5.3 Resultados de la hoja de la planta	28
5.4 Resultados de la altura de la planta	29
5.5 Resumen del análisis de crecimiento de las plántulas de cacao	30
5.6 Peso parte aérea y de raíz de las plántulas de cacao	30
5.6 Análisis de correlación de las variables involucradas	31
VI. CONCLUSIONES	33
VII. RECOMENDACIONES	34
VIII. BIBLIOGRAFIAS	35
ANEXOS	42

LISTA DE TABLAS

Tabla 1. Descripción taxonómica del cacao	7
Tabla 2. Leyenda de los tratamientos	23
Tabla 3. Análisis de la clorofila de las plántulas	26
Tabla 4. Análisis del diámetro de las plántulas	27
Tabla 5. Análisis de las hojas de las plántulas	28
Tabla 6. Análisis de la altura de las plántulas	29
Tabla 7. Datos de tasas de crecimiento de las cuatro variables evaluadas de las p	plantas de
cacao	30
Tabla 8. Estadístico sobre el peso parte aérea y peso de raíz	30
Tabla 9. Estadístico de correlación de las variables evaluadas	31

LISTA DE ANEXOS

Anexo 1. Resultados del análisis de clorofila de las plántulas de cacao	43
Anexo 2. Resultados del análisis del diámetro de las plántulas de cacao	48
Anexo 3. Resultados del análisis de las hojas de las plántulas de cacao	53
Anexo 4. Resultados del análisis de la altura de las plántulas de cacao	58
Anexo 5. Resultados del peso parte aérea de las plántulas de cacao	63
Anexo 6. Resultados del peso de raíz de las plántulas de cacao	65
Anexo 7. Muestras de plántulas de cacao	67

Juárez Velásquez, CA. (2023). Combinación de sustratos para la producción de plántulas de cacao (*Theobroma cacao L*). Tesis, Ingeniero Agrónomo. Universidad Nacional de Agricultura, Catacamas, Olancho. 81 pp.

RESUMEN

Juárez Velásquez C.A. Combinaciones de sustratos para la producción de plántulas de cacao (*Theobroma cacao L.*) Universidad nacional de agricultura.

Esta investigación se realizó en el departamento académico de Producción Vegetal en la sección de Cultivos Industriales de la Universidad Nacional de Agricultura. Con el objetivo de evaluar el crecimiento morfológico de plantas de cacao (Theobroma cacao L.) en diferentes combinaciones de sustratos. Los tratamientos fueron suelo común, Promix, gallinaza; donde fueron fueron mezclados en diferentes proporciones creando así 10 tratamientos que son suelo común 100%, Promix 100%, Suelo + Promix 1:1, Suelo + Promix 2:1, Suelo + Promix3:1, Suelo + Gallinaza 1:1, Promix + Gallinaza 1:1, Suelo + Promix + Gallinaza 1:1:1, Suelo + Promix + Gallinaza 2:1:1, Suelo + Promix + Gallinaza 3:1:1. Los datos fueron colectados a partir de la emisión de la primera hoja definitiva, hasta el cuarto mes de desarrollo a los 120 días, fueron evaluadas las siguientes variables Altura de la planta, Diámetro del tallo, Numero de hojas, Clorofila, Determinación de la masa, Índice de cualidad de dickson. Se determinó que el mejor tratamiento que interactúa mejor con el análisis de la clorofila es el del Suelo+Pro-Mix+Gallinaza 2:1:1, en el caso del diámetro es el que se combina con el Suelo+Pro-mix 3:1, en relación con el análisis de las hojas y la altura el tratamiento con la mejor combinación se atribuye al del Suelo+Gallinaza 1:1. Mostrando en los primeros 30 días una altura de 16.4 centímetros con un total de 4 hojas, a los 90 días presento una altura de 24.31 con 9 hojas y en la última toma de datos a los 20 días presento una altura de 30.6 con un número de 11 hojas definitivas.

Palabras clave: Clorofila, Índice de cualidad de Dicson (IOD), Estiércol de gallina.

I. INTRODUCCIÓN

La producción de plántulas es importante para el éxito del cultivo, ya que el crecimiento y producción, es afectado por la calidad de la planta, por lo que se debe tener muy en cuenta tanto el procedimiento realizado, así como el material de siembra utilizado para dicha labor, teniendo en cuenta que la planta de la cual se tome las semillas debe presentar características de alta productividad así como resistencia a enfermedades, ya que los mejores rendimientos se obtienen cuando se ha realizado una buena selección del material a producir en el vivero. Por otro lado, el sustrato que se utilice para la producción de plántulas debe ser de alta calidad, para obtener plantas óptimas para el trasplante.

El éxito de una planificación de cultivo, independientemente del objetivo, inicia con la selección de semillas y la producción de plántulas de calidad, que no depende únicamente de las propiedades genéticas de las semillas, sino también de las propiedades de los sustratos, porque es en este medio en el cual la plántula desarrollará sus primeros estadios de vida. El suelo es el medio de crecimiento de las plántulas por naturaleza e históricamente ha sido el material más utilizado en los viveros, por diversos factores tales como: su disponibilidad, costo, fácil obtención, entre otros (Pastor, 1999).

Varios factores ambientales controlan el crecimiento del cacao, entre ellos la precipitación, la temperatura y la humedad del suelo (Sena-Gomes y Kozlowsky, 1987), además, variables edáficas como resistencia a la penetración y porosidad del suelo influyen en el desarrollo de las plantas, causando una problemática a los productores de cacao para obtener plántulas vigorosas en un tiempo estimado. La investigación será orientada a encontrar un sustrato o combinación que mejore las propiedades tanto como morfológicas y fisiológicas de las plantas de cacao en comparación con lo tradicional que es el uso de suelo común.

II. OBJETIVOS

2.1 Objetivo General

Evaluar el crecimiento morfológico de plantas de cacao (*Theobroma cacao L.*) en diferentes combinaciones de sustratos.

2.2 Objetivos Específicos

Medir el efecto de diferentes combinaciones de sustratos para la producción de plantas de cacao.

Determinar el mejor tratamiento para la producción de plantas de cacao.

Verificar la mejor interacción de sustrato y materia orgánica para el crecimiento de plántulas de cacao.

III. REVISIÓN DE LITERATURA

3.1 El cacao (Theobroma cacao L.)

El cacao (*Theobroma cacao* L.) es un árbol originario de las selvas neotropicales, principalmente de la cuenca del Amazonas (Lachenaud et al., 2007). Estudios más recientes describen la zona de origen en el triángulo amazónico entre Colombia. Ecuador y Perú (Motamayor et al., 2008); sin embargo, su zona de cultivo se extendió a través de la zona tropical y subtropical de Centro y Sur América, África occidental y Asia sudoriental, de tal manera que el rango de temperatura en el que se han desarrollado los cultivos, es mucho mayor que el de su hábitat natural (Daymond y Hadley, 2004). En Colombia se ha priorizado el apoyo para el incremento del área de cultivos de cacao, que requiere de material vegetal con características de tamaño y desarrollo de la raíz que aseguren el establecimiento y longevidad del cultivo.

El cacao, *Theobroma cacao* L. es un árbol cuyo origen proviene de las regiones húmedas tropicales de América del Norte, Centro América y América del Sur. Existen más de 14000 variedades de cacao conocidas, las tres principales para la comercialización y elaboración de chocolate son Criollo, Forastero y Trinitario. Estas variedades se distinguen por la diferencia en su flor, dimensión, color, fruto y semilla, estas pueden ser por su origen geográfico y dan características diferentes de sabor. El cacao pertenece al orden Malvales, familia Esterculiáceae, género Theobroma y especie cacao. Crece en climas cálidos y húmedos, llega a medir hasta 10 m de altura, florece durante todo el año (sin sequías o variaciones de temperatura muy marcadas). (Becerra, 2018)

En el cultivo de cacao el beneficio es un eslabón muy importante que se debe tener en cuenta para obtener granos de excelente calidad, este consiste en la recolección, partido y desgranado de la mazorca, fermentado, secado, torrefacción, mezclado, molienda y clasificación. Luego de haber hecho una correcta recolección, partido y desgranado de la mazorca, el siguiente proceso al que se le deberá someter a los granos de cacao será la fermentación, con el fin de desarrollar aromas precursores, allí se llevará a cabo una serie de procesos que beneficiaran a los granos con los aromas sabores y colores característicos del chocolate, se lleva a cabo un proceso bioquímico de transformación interna y externa de la almendra del cacao teniendo como resultado la remoción del mucilago que cubre el grano. (Marino, 2020)

3.2 Origen e historia

Los primeros árboles del cacao crecían de forma natural a la sombra de las selvas tropicales de las cuencas del Amazonas, hace 4000 años. Los primeros cultivadores en Sudamérica fue la culturMayo Chinchipe-Marañon, en medio de dos caseríos ubicados en el sitio arqueológico Santa Ana-La Florida se encontró evidencia que data de 5.500 años atrás por lo que se puede considerar a la civilización antes referida como una de las primeras sociedades del continente, los datos muestran un desarrolló que duró aproximadamente 800 años, entre desechos domésticos y rituales funerarios se encontraron plantas de cacao que se determinaron mediante análisis, de toda la investigación se hizo pruebas de ADN a un tiesto, que se supone procedía de desechos cotidianos y que tenía materia orgánica, dio positivo a presencia de cacao con una antigüedad que se remonta al año 3.500 a. C. (Vera & Álava, 2020)

Mesoamérica que abarca desde México hasta Centroamérica es considerada la cuna del cacao, denominado antropológicamente "el alimento de los dioses" por sus bondades e importancia para la cultura de los mayas, toltecas y aztecas. Este tipo de cultivo representaba para la cultura mesoamericana precolombina más que una fuente alimenticia de alto valor nutricional, era utilizada para fines medicinales, constituía el sistema monetario de la época,

además se consideraba un símbolo religioso muy importante, utilizado en sus ceremonias religiosas. Indistintamente el origen del cultivo de cacao, los españoles denominaron "criollos" a los cacaos originarios de México y Centroamérica, mientras que a los cacaos de Suramérica y el Caribe los denominaron "forasteros", incluyendo el cacao cultivado en África y Asía que fue introducido por los colonizadores europeos cuando este se popularizó en Europa (Fraile et al. 2018)

A pesar de que su origen exacto no es del todo claro, dando lugar a diversas teorías, pero, el centro de origen parece situarse al noreste de América del Sur, en la zona alta amazónica. El cacao se cultiva principalmente en terrenos cálidos, húmedos, con una temperatura promedio de 30°C (bosques tropicales húmedos), con una fauna y flora característica, asociada, que permite que los árboles de cacao crezcan tomando los aromas desde el medio circundante y expresándolos en sus frutos. Haciendo historia, describe la significativa influencia que tenían los esclavos en Barlovento en las instalaciones de haciendas cacaoteras, en concordancia con la calificación efectuada por los administradores españoles de los siglos XVIII y XIX de hacienda y no de plantaciones. (Pérez et al. 2021)

3.3 Variedades del cacao

Las formas de cacao se clasifican tradicionalmente en tres grupos genéticos: Criollo, Forastero y Trinitario, la delimitación clásica de grupos, ya sin base científica, puede resumirse de la siguiente manera:

Criollo: Esta variedad representa los cacaos originales, cuyas plantaciones más antiguas se remontan al siglo XVII. Cultivada al principio en Venezuela, en América central y en México, también la reencontramos hoy en Ecuador, en Nicaragua, en Guatemala y en Sri Lanca. Considerado como el "príncipe de los cacaos", Criollo es famoso por su finura y sus aromas poderosos. Representa no obstante sólo el 5 % de la producción mundial, debido a su fragilidad frente a las enfermedades y frente a los insectos. Principalmente es destinado a la chocolatería de alta gama. La raza Criollo tiene frutos de cáscara suave con semillas redondas, blancas o violetas, y de un agradable sabor dulce. (Bravo, 2020)

Forastero: Comprende el cacao del alto y bajo del Amazonas, que se encuentra en las estribaciones de la cordillera oriental de los Andes en el Amazonas de Venezuela, Colombia, Ecuador, Perú y Bolivia, que se elevan a altitudes de 1000 metros. Se caracterizan por tener pequeñas mazorcas inicialmente de color verdeo rosa pálido, luego amarillo, la punta es redondeada, la cáscara de la mazorca es suave o ligeramente rugosa, delgada, tiene 10 surcos superficiales, con una capa lignificada en el centro del pericarpio. Las semillas son pequeñas de color púrpura, triangulares en sección transversal, aplanadas. (Bravo, 2020)

Trinitario: Finalmente existen diversas variedades híbridas de cacao, entre las cuales la más conocida es el cacao trinitario. Como su nombre sugiere, es originario de Trinidad donde, después 9 de un terrible huracán que en 1727 destruyo prácticamente todas las plantaciones de la isla, surgió como resultado de un proceso de crecimiento. Se formó de manera espontánea de un cruce entre cacaos criollos y forasteros amazónicos en la isla de Trinidad pasando luego a Venezuela, Colombia y el resto del mundo. De este cruce heterogéneo se presentan diversidad de formas intermedias de mazorcas al igual que su coloración rojizos. (Bravo, 2020)

3.4 Clasificación taxonómica del cacao

Desde el punto de vista botánico las plantas de cacao se clasifican en 3 grandes grupos el criollo, el forastero y el trinitario. Donde en Latinoamérica el criollo posee características únicas, mientras que los forasteros o trinitarios una mayor productividad en detrimento de la calidad. En resumen, la planta de cacao es una caulífera y semi-caducífola que alcanza una altura de 4 a 5 metros. Tiene pequeñas flores rosadas que se forman en el tronco y en las ramas más viejas. Otro aspecto característico es que las semillas de cacao poseen un sabor amargo, ya que contienen una gran cantidad de grasa conocida como manteca de cacao (Tabla 1). (Gonzalez, 2019)

Tabla 1. Descripción taxonómica del cacao

Clasificación Taxonómica				
Reino	Plantae			
Subreino	Tracheobionta			
División	Magnoliophyta			
Clase	Magnoliopsida			
Subclase	Dilleniidae			
Orden	Mavales			
Familia	Malvaceae			
ubfamilia	Byttnerioideae			
ribu	Theobromeae			
Género	Theobroma			
Especie	T.cacao			
Nombre científico	Theobroma cacao			

Fuente: (Gonzalez, 2019)

3.5 Producción mundial del Cacao

La Organización Internacional del Cacao (ICCO, 2021) estima una producción récord mundial de 5024 miles de toneladas, es decir, un incremento de 6,3% durante la campaña 2020/2021. Esta es la primera vez que se supera la marca de los 5 millones de toneladas, debido a que se presentarían mejores condiciones climatológicas en las principales regiones productoras. De esta manera, África incrementaría su producción en 9% y se situaría en 3,871 millones de toneladas. Asimismo, Asia y Oceanía crecerían en 2%, esto es, se elevaría a 278 miles de toneladas. En tanto, se espera que la producción de las Américas disminuya en 2%, vale decir, a 875 miles de toneladas. En términos de cuota de la producción mundial total, África es la mayor región productora, con un 77% de la producción total. Las Américas y Asia y Oceanía se estiman en 17% y 6%, respectivamente. (Ministerio de Desarrollo Agrario y Riego, 2021)

En África, el aumento de la producción se explica por las buenas condiciones atmosféricas, por lo que se presagia una producción récord de 2 225 miles de toneladas. Para Ghana, se prevé que la producción experimente un incremento interanual, que actualmente se estima en 950 miles de toneladas, lo cual se mantendría para la presente campaña, debido al progreso de las iniciativas para fomentar la producción a nivel nacional (programas de fumigación masiva, la polinización manual, entre otras). Para Camerún, no se ha notificado ningún cambio, por lo que se espera que, para la campaña 2020/2021, se obtenga una cosecha igual a la campaña anterior que, actualmente, se estima en 280 miles de toneladas. En Nigeria, se pronostica que la producción experimente un nuevo aumento interanual de 8% para situarse en 270 miles de toneladas. (Ministerio de Desarrollo Agrario y Riego, 2021)

En África se produce la mayor cantidad de cacao en el mundo, siendo Costa de Marfil, Ghana, Nigeria y Camerún los países más representativos, ya que juntos obtienen alrededor de 2.752 mil toneladas por año. El continente que le sigue en importancia es el asiático, en este caso, sólo Indonesia produce alrededor de 738 mil toneladas. En América, Brasil y Ecuador son los principales productores: 235 y 138 mil toneladas. El consumo de cacao ha tenido una tendencia creciente, que ha sido en distinta medida en todas las regiones del mundo. Entre el 2014 y 2015, los mercados maduros (Estados Unidos, Canadá y los países europeos) presentaron crecimientos moderados (7%) a diferencia de los mercados emergentes (Asia, Oceanía, África y ALC) en donde ha crecido un 28%. Los países asiáticos mostraron mayor incremento en el consumo, que pasó de 288 a 435 miles de toneladas de cacao. (Sánchez et al. 2019)

3.6 Producción regional del Cacao

La participación de Centroamérica en el mercado mundial del cacao es aún limitada, a pesar de más de veinte años de esfuerzos sostenidos para promover y desarrollar el rubro cacao en los distintos países del área. Las exportaciones totales de la región1 representan una participación del 0.6% del mercado mundial. Destaca Guatemala con el 32 % y Costa Rica con el 31 % de las exportaciones de cacao y sus derivados de la región. En estos países, aun

cuando el cultivo de cacao tiene poca presencia y su producción es baja, la transformación del grano y su venta como bien intermedio o como bien final es la más alta de Centroamérica. Ambos acaparan el 78 % de las ventas totales de la región. (Tapia, 2019)

El Consejo Agropecuario Centroamericano (CAC) aprobó, recientemente, en Guatemala la Estrategia Regional de Cacao y su Plan de Implementación para el Sistema de la Integración Centroamericana (SICA), que promueve un relevo generacional para sostener a la industria, darle mayor calidad y valor agregado a la producción. En el marco del Salón del Cacao y Chocolate de la Región SICA, el evento más importante de la industria en la región y que se desarrolla virtualmente, la Secretaría Ejecutiva del Consejo Agropecuario Centroamericano (SECAC), Rikolto, la Agencia Suiza para el Desarrollo y la Cooperación (COSUDE) y el Fondo España (FES-SICA), presentaron la Estrategia Regional de Cacao 2022 – 2032 y el Plan de implementación 2022-2025. La Organización Internacional del Cacao (ICCO, en inglés), proyectó que en 2021 Centroamérica producirá unas 85,400 toneladas de cacao fino de aroma de alta calidad. (Segura, 2021)

3.7 Producción Nacional del Cacao

Entre 2015-2018 el consumo aparente de cacao en grano mostró un comportamiento irregular, en términos generales registró una tasa de decrecimiento media anual de 14.3%, al pasar de 1,774,648 libras en 2015 a 1,118,401 libras. Durante el período 2016-2019 el valor de las exportaciones de cacao y sus preparaciones creció un 0.7%, al pasar de US\$ 2.8 millones en 2016 a US\$ 2.9 millones en 2019; destacando la venta de cacao en grano (66.5%); en menor medida se vendió pasta de cacao (14.7%). En términos de volumen se registró a nivel global un decrecimiento de 5.3%, al pasar de 866 Tm en 2016 a 736 Tm en 2019. A octubre 2020, se registra un valor exportado de US\$ 2.3 millones por la venta en el exterior de 589 Tm de cacao y sus preparaciones; sobresaliendo la exportación de cacao en grano que representó alrededor del 89.1% de las divisas generadas y el 89.6% del volumen comercializado. Entre los principales mercados se encuentra Suiza (79.5% en valor y 68.7%

en volumen), Holanda (8.5% en valor y 8.4% en volumen) y El Salvador (3.9% en valor y 15.2% en volumen). (SAG (Secretaría de Agricultura y Ganadería), 2020)

3.8 El suelo

El suelo depositado en contenedores puede modificar sus propiedades físicas y en consecuencia las plantas se pueden alterar, modificar o transformar. Los cambios en la densidad aparente del suelo pueden conducir a una disminución de poros y restricción en la penetración de las raíces (Lipiec y Stepniewski, 1995), como también disminuyen la disponibilidad de agua y la aireación, el crecimiento de la raíz (Gaitan et al., 2005) y la producción de las plantas (Domzal et al., 1991; Mapfumo et al., 1998; Arocena, 2000; Freddi, et al., 2006). Encontrar un sustrato o conbinación que colleve a disminuir estas determinantes que afectan al cultivo en cunato a su crecimiento y desarrollo, Es el principal objetivo de los viveristas hoy en día.

3.9 Suelo Común

El suelo es, por naturaleza, es el principal medio de crecimiento de las plantas, su utilización en vivero es muy común debido a su disponibilidad e inclusive sin costo, aunque no siempre cumplen con condiciones óptimas para su utilización en vivero. González (2002) menciona que el suelo común presenta problemas como: La degradación del suelo superficial por el llenado de bolsa, es hospedero de plagas y enfermedades de la raíz, no presenta homogeneidad en su textura, pobre compactación que perjudica al momento del hacer el trasplante al campo definitivo, la calidad de la parte física y química no es constante, Por lo tanto, es necesario tratar a cada suelo de modo específico, con el fin de conseguir que las altas exigencias de este tipo de cultivos sean satisfechas.

Los suelos franco arenosos o francos son ingredientes buenos para la preparación de mezclas con suelo. Los francos tienen las características físicas deseables de las arcillas y las arenas sin mostrar las propiedades indeseables de soltura extrema, baja fertilidad, y baja retención de humedad, por un lado, y adherencia, compactación, drenaje y movimiento lento del aire por el otro. Puesto que los problemas que envuelven el drenaje y la aireación son acentuados cuando el suelo es colocado en un recipiente, los franco ó franco arenosos son preferidos al franco limoso o arcilloso (Alvarado y Solano, 2002).

3.10 Sustrato

Cualquier medio sólido, natural, de síntesis o residual, mineral u orgánico, distinto del suelo que sirva de soporte para las raíces de la planta interviniendo o no en el proceso de nutrición, se considera un sustrato (Abad y Noguera, 1998; Fonteno, 1999; Terés, 2001). El sustrato puede contener material químicamente activo o inerte que intervenga en el complejo proceso de la nutrición mineral e hídrica de la planta. El sustrato tiene dos funciones principales, la primera es anclar y aferrar las raíces protegiéndolas de la luz y permitiéndoles la respiración y la segunda, contener el agua y los nutrientes que la planta necesite (Calderón y Cevallos, 2003).

Desde el punto de vista del cultivo de cacao, la finalidad del sustrato de cultivo es producir una planta o cosecha abundante y de buena calidad, en el período de tiempo más corto posible y con los menores costos de producción. Además, el sustrato utilizado no debe provocar un impacto ambiental de importancia. La elección del tipo de sustrato depende de las características del cultivo a implantar, de la instalación y de las variables ambientales. Además, se deben tener en cuenta las prácticas para manejarlo, de tal forma que se obtengan los resultados esperados (Abad et al., 2005).

3.10.1 Clasificación de los sustratos

Según sus propiedades

- Químicamente inertes: arena silícea o granítica, grava, roca volcánica, perlita, lana de roca, arcilla expandida, etc.
- Químicamente activos: turbas rubias y negras, orujos, residuos de la industria maderera, vermiculita, etc.

La diferencia entre ambos grupos se establece por su capacidad de intercambio catiónico (CIC). Cuando la CIC es pequeña o nula, el material actúa exclusivamente como medio de soporte físico para el cultivo, sin ejercer influencia sobre el intercambio de minerales de los que se alimenta la planta. Estos sustratos de baja CIC son los empleados en el cultivo hidropónico. Los materiales químicamente activos acumulan los nutrientes y forman una reserva de la cual los va tomando la planta. Actúan, por lo tanto, como un colchón nutritivo para la planta, que amortigua cualquier variación del suministro de nutrientes a lo largo del tiempo (Andre, J.P. 1987).

Según su origen

Materiales orgánicos

- Naturales: turbas rubias y negras, fibra de coco, son los más empleados; subproductos de actividades agrícolas, urbanas e industriales. En general, necesitan un tratamiento de "compostaje" para ser aptos para el cultivo. Algunos de estos productos son orujos de uva, cortezas de árboles y residuos madereros en general, paja de cereales, residuos sólidos urbanos, lodos de depuración de aguas, etc. (Ansorena M., J. 1994).
- **Sintéticos:** son polímeros de la industria de los plásticos, no biodegradables, como poliuretano, poliacrilamida y poliestireno (Ansorena M., J. 1994).

Minerales

- Naturales: proceden de rocas y minerales diversos: arenas, gravas, gravas volcánicas (puzolanas, zeolitas), etc.
- Tratados: proceden de rocas y minerales tratados industrialmente por procedimientos físicos en general, y en menor medida químicos, de tal modo que sus propiedades resultan muy alteradas: perlita, lana de roca, vermiculita, arcilla expandida, escorias industriales de altos hornos, estériles del carbón, etc. (Alarcón V., A.L. 2006)

3.11 Combinaciones compuestas comerciales

Existen combinaciones entre los sustratos orgánicos y minerales que se emplean con el objetivo de brindar mejores condiciones a las plantas en vivero, estos son denominados igualmente sustratos lo que los hace diferenciarse es su nombre y su disponibilidad en costos de adquisición existiendo gran variedad comercial como lo es el pro-mix y el peat-moss.

3.12 Propiedades de los sustratos |

3.12.1 Propiedades mecánicas

Es imprescindible que el material mantenga estable su estructura a lo largo del ciclo de cultivo, sin degradarse. Asimismo, es preferible que carezca de aristas que podrían lesionar las raíces y el cuello de las plantas. Un material excesivamente frágil puede fragmentarse en partículas finas que reducirán la porosidad y la capacidad de aireación, sobre todo en las capas del fondo del contenedor y esto limitará la supervivencia de las raíces en las zonas afectadas, disminuyendo el volumen aprovechable de sustrato.

3.12.2 Propiedades físicas

Las propiedades físicas constituyen el conjunto de características que describen el comportamiento del sustrato en relación con su porosidad. Estas propiedades determinan las fracciones sólida, líquida y gaseosa del sustrato y, por lo tanto, las cantidades de agua y de aire de los que va a disponer la planta. Por consiguiente, de dichas características dependen tanto la alimentación de la planta como la respiración radicular y todos los procesos afectados por ellas (Cadahía, C. y Eymar, E. 1992).

Para la definición y determinación de estas propiedades, es extremadamente importante establecer métodos normalizados (Martínez, 1992; Ansorena, 1994; Burés, 1997; CEN Normas UNE-EN, 2001-2008). Sin ellos es muy difícil cuantificar la calidad de los sustratos, comparar los diversos materiales y prever sus aplicaciones, su comportamiento y cómo deben manejarse.

3.12.3 Propiedades y caracterización física de los sustratos

En el caso de los sustratos de los cultivos se ha dado más importancia a las propiedades físicas que a las propiedades químicas o biológicas, ya que las primeras tienen una relación directa con la cantidad de fertirriego aplicado durante el desarrollo de la planta, mientras que las segundas no se expresan en forma tan inmediata y medible como las primeras (Terés, 2001).

En función de las necesidades y el ámbito de estudio, las propiedades físicas a estudiar son distintas. En el manejo del agua de riego están estrechamente relacionadas las características del espacio poroso. El transporte y el manejo del sustrato están condicionados por la relación peso, volumen y, por lo tanto, por su densidad aparente y la cantidad de agua absorbida (Terés, 2001). Las propiedades físicas más importantes en los sustratos son la distribución de tamaño de partículas, porosidad y retención de agua (van Schie, 1999; Ansorena, 1994). Para determinar algunas de estas propiedades es necesario conocer previamente otras

propiedades físicas como densidad aparente, densidad real y contenido de humedad, entre otras.

3.13 Densidad real

La densidad real (dr) corresponde a la relación de la masa con respecto al volumen del sustrato sin considerar los espacios porosos. Este valor es propio de cada material y no depende del grado de compactación ni del tamaño de sus partículas; sin embargo, es interesante relacionar el efecto de la presencia de poros ocluidos, esto es, poros dentro de las partículas del material que conforman el sustrato, como es el caso de las cascarillas de arroz, con la porosidad (Fonteno, 1999).

3.14 Densidad aparente

Es la masa seca del material sólido por unidad de volumen aparente del sustrato seco, es decir incluyendo el espacio poroso entre las partículas (Abad y Noguera, 1998). La densidad aparente es importante desde el punto de vista de manipulación de los sustratos, ya que éstos se transportan y se manipulan previamente a su disposición en campo, por lo cual se debe tener en cuenta su peso y su volumen. Un sustrato con densidad aparente baja resulta más fácil de manejar y transportar; por esta razón, es frecuente que la materia orgánica ocupe un alto porcentaje de la mezcla final. No obstante, es importante tener en cuenta que la densidad aparente deber ser suficiente para soportar y aferrar la planta (Fonteno, 1999).

3.15 Porosidad total

Un medio de cultivo ideal debe estar constituido por tres fases: sólida, líquida y gaseosa. La porosidad corresponde al porcentaje en volumen del sustrato que no se encuentra ocupado por la fase sólida, es decir, el cociente entre el volumen de poros (Vp) y el volumen total del medio de cultivo (Vt). La porosidad varía ampliamente dependiendo del grado de

compactación del medio de cultivo, alcanzado valores alrededor de 30% en suelos compactados o del 95% en algunas turbas (Ansorena, 1994).

La porosidad de los medios de cultivo es un factor determinante para la aireación de las raíces y la disponibilidad de agua para la planta. En este sentido, se debe tener en cuenta, además de la porosidad total, el tamaño de los poros que conforman dicha porosidad. Debido a que las partículas que componen la mayoría de los medios de cultivo no tienen forma ni tamaños uniformes, el tamaño de los poros presentes también varía (Ansorena, 1994); en los poros pequeños o microporos, menores a 30 µm, se retiene el agua, y en los poros grandes o macroporos, mayores a 30 µm, se almacena el aire. Raviv et al. (1986), citado por Abad y Noguera (1998), observan que al aumentar el tamaño de las partículas aumenta la porosidad y el tamaño de los poros, por lo que la aireación y la retención de agua van a depender en gran medida de la distribución del tamaño de los poros y de la porosidad total.

3.16 Tipos de sustratos minerales naturales

3.16.1 Arena y grava

La arena, de granulometría comprendida entre 0,2 y 2 mm y la grava entre 2 y 20 mm, tienen composición y propiedades dependientes de su material de origen. Para su empleo.en los cultivos se recomienda atender a dos aspectos, su contenido de carbonato cálcico total no superior al 10%, y su distribución granulométrica, debido al efecto de la misma sobre la disponibilidad de agua y de aire. Desde este punto de vista se recomienda emplear arena de tamaño de grano entre 0,5 y 2 mm, que tiene buena porosidad, aunque su retención hídrica es pequeña. Las granulometrías inferiores a 0,5 mm son peligrosas por el riesgo de asfixia radicular que entrañan y las superiores a 5 mm no retienen agua, lo que obliga a un rígido control o supervisión de la frecuencia del riego (Abad et al., 2005; Bunt, 1988).

3.16.2 Rocas volcánicas

Según su origen tienen características diversas. Conviene distinguir algunos grupos que han sido más estudiados en aplicación agrícola y que difieren en sus propiedades más importantes, las zeolitas y las puzolanas, aun cuando todos ellos son ricos en minerales. Las zeolitas son silicatos hidratados, cristalinos con alta porosidad abierta. Debido a esto, su capacidad para absorber agua, nutrientes y aire es muy elevada. Las puzolanas en cambio tienen una alta porosidad gruesa y cerrada al exterior (hasta el 10%), por lo que su capacidad de retención del agua y nutrientes es muy baja, con alta aireación (Moinereau et al., 1987).

3.17 Sustratos minerales tratados

3.17.1 Perlita

Este material es un tipo de arena volcánica de sílice que calentada a unos 1.000°C se funde y se hincha formando copos muy porosos (Moinereau et al., 1987). La densidad aparente es baja y la porosidad es elevada, aunque estas y el resto de las propiedades físicas varían según el tamaño de las partículas. La perlita es químicamente inerte y de muy fácil lavado cuando los niveles de salinidad aumentan. El pH inicial es de 7 a 7,5 y se hace descender saturando el sustrato con una solución ácida, pero nunca debe regarse con solución de pH menor de 5, debido a que puede liberar aluminio y producir toxicidad en algunos cultivos.

3.17.2 Vermiculita

La vermiculita es una arcilla de estructura laminar, que por tratamiento térmico a más de 1.000°C pierde el agua interlaminar y se hincha unas 10 veces, quedando convertida en un material muy ligero, de elevada porosidad, 96% como la perlita y también de niveles similares de retención de agua, del 45 al 50%. Sin embargo, su capacidad de intercambio catiónico es muy alta, de 60 a 140 meq.100g-1 (Moinereau et al., 1987) y, por lo tanto, no es

un material recomendable para el cultivo hidropónico, además de poseer una alta fragilidad estructural que puede modificar sus propiedades físicas a lo largo del tiempo.

3.17.3 Arcilla expandida

Se obtiene tratando gránulos de arcilla húmeda a alta temperatura, de lo que resultan bolas muy porosas, de porosidad ocluida, de estructura y forma estables. La capacidad de retención del agua es pequeña, como en la perlita o algo menor según su granulometría y la aireación es alta. Se considera como químicamente inerte, aun cuando esta característica puede ser diferente según el origen del producto, y puede incluso requerir lavados previos a su empleo para eliminar sales (Moinereau et al., 1987).

3.17.4 Lana de roca

Este sustrato, muy difundido, se obtiene por calentamiento a 1.600°C de roca basáltica, carbonato cálcico y coque bajo corriente de aire, que sometido a rotación forma un fundido fibroso muy fino; se enfría y trata con polímero de urea-formol y con un mojante, ya que es hidrófugo. Se comercializa suelto o en forma de tablas, cubos, cilindros, de tamaños diversos, envueltos en lámina de polietileno o desnudos (Moinereau et al., 1987).

3.17.5 Residuos industriales

Los residuos de minería del carbón llamados estériles de lavadero, con granulometrías entre 0 y 10 mm, son materiales con características físicas similares a las de las arenas de idénticas dimensiones. Los trabajos de González et al. (1992) y García et al. (1992) los caracterizan como materiales con baja retención de agua fácilmente disponible, inferior al 8%, porosidad del 40 al 50% y densidad aparente del 1,2 al 1,5.

3.18 Sustratos orgánicos naturales

3.18.1 Turba

Las turbas son los sustratos orgánicos naturales de uso más general y tradicional se utiliza más en la horticultura. En síntesis, se distinguen dos tipos:

- ✓ Poco descompuestas, son materiales de reacción ácida, pobres en minerales por estar muy lavados, debido a su origen de zonas altas de precipitaciones abundantes y que conservan parcialmente su estructura y un buen equilibrio entre agua y aire después del riego.
- ✓ Muy descompuestas, son las turbas negras, sin estructura, con frecuencia muy salinizadas y que presentan menor aireación que las anteriores. Son apropiadas para mezclas con materiales que mejoren sus propiedades deficientes.

3.18.2 La fibra de coco

Es un material de desecho de la industria cocotera, compuesto por la parte desechable de los residuos del mesocarpio después de aprovechar las fibras largas. El resto contiene fibras cortas no aprovechadas por la industria y partículas de corteza de diferentes tamaños. Esta heterogeneidad es, por cierto, uno de los problemas importantes que tiene la fibra de coco pues dificulta su manejo durante el cultivo (Abad et al., 2002).

3.18.3 Cascarilla de arroz

La cascarilla del arroz, de uso bastante generalizado en las zonas arroceras por su bajo precio. La cascarilla aporta a las mezclas propiedades de mejor aireación, pero tiene muy escasas capacidad de retención de agua y mojabilidad, por lo que no es aconsejable usarla sin mezclar con otros materiales, por ejemplo, las mezclas con turba hasta un 20 a 25% de cascarilla dan

buenos resultados (Evans y Gachukia, 2004), también la cascarilla carbonizada mezclada con fibra de coco mejora su comportamiento físico (Awang et al., 2009; Quintero et al., 2009).

3.18.4 Compostaje

El compostaje es la descomposición biológica de los constituyentes orgánicos de los residuos en condiciones controladas (Golueke, 1972). El objetivo del compostaje es dar estabilidad al material, eliminar componentes dañinos y dotarle de mejores propiedades para el cultivo de plantas. Para ello son necesarias condiciones de humedad y de aireación que determinen temperaturas favorables para organismos llamados termófilos. El proceso tiene tres fases:

- ✓ Fase inicial, de 1 a 2 días, en la que se descomponen los compuestos fácilmente degradables;
- ✓ Fase termófila, que dura varios meses, en la que se degrada la celulosa en un proceso bacteriano aerobio;
- ✓ Fase de estabilización, en la que la temperatura baja, el ritmo de la descomposición disminuye y el compost es recolonizado por microorganismos mesófilos.

3.18.5 La corteza de pino

Es un residuo muy común aprovechado para sustratos, tiene un contenido alto de lignina (alta relación lignina/celulosa). A menudo se usa sin compostaje previo, es decir, fresca. En este caso, por lo menos, debe enriquecerse con microelementos esenciales y con calcio y magnesio (Diego, L.F. 1992).

3.18.6 Cortezas de maderas duras

Se utilizan como son las de Quercus, alcanzan un grado de descomposición muy notable en el compostaje. Hay muchas cortezas que liberan excesos de manganeso asimilable; esto debe

vigilarse, ya que la concentración no debe nunca sobrepasar los 200 mg. L-1. En general todos los residuos de la madera, cortezas, serrines, etc., deben enriquecerse con nitrógeno, de 1 a 1,5 kg.m-3 y preferiblemente también con fósforo, antes del compostaje. El pH óptimo es de 6,5 a 7,5 y, dado que el pH de la corteza suele ser menor, esto se compensa añadiendo nitrógeno amoniacal y/o gallinaza, con ello se activa la descomposición. La urea, la gallinaza y los lodos son buenas fuentes de nitrógeno (Arrieta, V. y Terés, V. 1992).

3.18.7 Gallinaza

Se usa el estiércol animal como abono orgánico con la finalidad de acondicionar el suelo mejorando su contenido de humus y estructura, estimulando la vida micro y mesobiológica del suelo. Al mismo tiempo se fertiliza el suelo cono micro y macro nutrientes. En el caso de estiércol de aves se observa una liberación inmediata de nutrientes y en seguida una liberación paulatina del resto de los nutrientes durante 15 1 a 2 años. El contenido de nutrientes en el estiércol varía dependiendo de la clase de animal, su dieta y el método de almacenamiento y aplicación.

3.19 Sustratos Compuestos comerciales

3.19.1 Pro-Mix

Los viveristas son los que demandan en mayor medida este tipo de tecnología, un sustrato comercial (Promix®), que contiene un 65-75% de turba de Sphagnum, además de perlita, vermiculita, macro y micronutrimentos, cal dolomítica y calcítica; no obstante, a pesar que es un sustrato con excelentes propiedades físicas, es de elevado costo por ser importado. En tal sentido, es importante la caracterización de materiales locales que puedan servir como sustratos de costos razonables y ecológicamente sustentables.

IV. MATERIALES Y MÉTODO

4.1 Descripción del lugar

El trabajo de investigación se realizó en el departamento académico de Producción Vegetal en la sección de Cultivos Industriales de la Universidad Nacional de Agricultura. Ubicada en el Valle del Guayape, a 6 km. de la ciudad de Catacamas, departamento de Olancho, Cuenta con un clima tropical que varía desde los 23-38 centígrados, con una precipitación del 59 %, una humedad del 90 %, con vientos de 5 km/h, y con una altura sobre el nivel del mar de 450 msnm.

4.2 Materiales y Equipo

- ✓ Semillas de cacao
- ✓ Invernadero
- ✓ Madera
- ✓ Bolsas Plásticas
- ✓ Pro-mix
- ✓ Gallinaza
- ✓ Suelo común

4.3 Preparación de los tratamientos

Estos fueron sometidos directamente y en mezclas entre sustratos que se determinaron a continuación y fueron medidas por medio de proporciones.

4.3.1 Colecta de Semillas

El trabajo investigativo se realizó con semillas de cacao. Para garantizar una producción de plántulas de calidad, es necesario contar con material genético de buena calidad. Es ahí la importancia de la buena clasificación de la semilla, en cuanto a tamaño color y la forma tomando en cuenta lo antes mencionado inicie con la colecta de frutos que presentaran estos rasgos de importancia luego retire el mucilago de las semillas de una forma artesanal utilizando aserrín de madera y sometí las semillas a la siguiente clasificación tomando en cuenta el color, forma y tamaño.

4.3.2 Tratamientos a evaluar

- ✓ Suelo común
- ✓ Promix
- ✓ Suelo+Pro-mix 3:1
- ✓ Suelo+Pro-mix 2:1
- ✓ Suelo+Pro-mix 1:1
- ✓ Suelo+Gallinaza 1:1
- ✓ Pro-Mix+Gallinaza 1:1
- ✓ Suelo+Pro-Mix+Gallinaza 3:1:1
- ✓ Suelo+Pro-Mix+Gallinaza 2:1:1
- ✓ Suelo+Pro-Mix+Gallinaza 1:1:1

4.3.3 Aleatorización

Tabla 2. Leyenda de los tratamientos

Tratamientos	Combinación		Bloques		
		I	II	III	IV

1	Suelo 100%	101	202	301	410
2	Pro-Mix 100%	109	203	308	409
3	Suelo+Pro-mix 3:1	103	209	30	408
4	Suelo+Pro-mix 2:1	107	207	310	407
5	Suelo+Pro-mix 1:1	105	204	303	406
6	Suelo+Gallinaza 1:1	102	206	30	405
7	Pro-Mix+Gallinaza 1:1	108	205	306	404
8	Suelo+Pro-Mix+Gallinaza 3:1:1	104	208	309	403
9	Suelo+Pro-Mix+Gallinaza 2:1:1	106	210	305	402
10	Suelo+Pro-Mix+Gallinaza 1:1:1	110	209	307	401

Fuente: Elaboración propia.

4.4 Diseño experimental

Se utilizó un diseño de bloques completamente al azar con 10 tratamientos y 3 repeticiones siendo la unidad de muestreo 10 plantas, para un total de 30 plantas por tratamiento, para cada evaluación.

4.5 Variable a Evaluar

Los datos fueron colectados a partir de la emisión de la primera hoja definitiva, hasta el cuarto mes de desarrollo a los 120 días, fueron evaluadas las siguientes variables.

✓ Altura de la planta. La variable altura se medió haciendo uso de una regla graduada en centímetros, donde se llevó a cabo la acción desde la base del tallo hasta la hoja más alta.

- ✓ **Diámetro del tallo.** Esta variable se midió con ayuda de una herramienta llamada pie de rey graduada en milímetros, este proceso consta de pasos fáciles mediante los cuales se obtuvo el grosor de los tallos de las plantas.
- ✓ Numero de hojas. Mediante el uso de la visión se logró el conteo de las hojas de cada planta.
- ✓ Clorofila. La variable clorofila será tomada de las hojas con el uso de un equipo SPAD-502.
- ✓ **Determinación de la masa seca total.** Con el uso de horno se extrajo el agua de la biomasa y se pesó la masa seca.
- ✓ Índice de cualidad de Dickson. Este Índice para ser determinado exige el uso de esta fórmula.

$$ICD \frac{Peso\ parte\ a\'erea}{Altura\ (cm)/Di\'ametro\ (mm)\ +\ Peso\ parte\ a\'erea/\ peso\ de\ la\ raiz}$$

- ✓ Tasa de Crecimiento absoluto. Esta variable se midió tomando el peso seco total de la planta en relación directa con el tiempo trascurrido al momento del pesaje.
- ✓ Relación diámetro del tallo entre altura de la planta.

$$RDA \frac{Diámetro\ del\ tallo}{Altura\ (cm)}$$

V. RESULTADOS Y DISCUSIÓN

5.1 Resultados de la clorofila de la planta

Tabla 3. Análisis de la clorofila de las plántulas

Tratamientos	Combinación	Clorofila de la planta								
		30 días	60 días	90 días	120 días					
1	Suelo 100%	37.38	42.5	42.17	43.18					
2	Pro-Mix 100%	38.54	43.59	43.66	44.65					
3	Suelo+Pro-mix 3:1	37.38	43.82	40.42	41.43					
4	Suelo+Pro-mix 2:1	38.26	43.12	42.06	43.07					
5	Suelo+Pro-mix 1:1	37.73	43.76	40.79	41.81					
6	Suelo+Gallinaza 1:1	38.32	44.32	43.44	44.45					
7	Pro-Mix+Gallinaza 1:1	38.37	44.25	43.67	44.69					
8	Suelo+Pro-Mix+Gallinaza 3:1:1	37.62	46.41	42.88	43.9					
9	Suelo+Pro-Mix+Gallinaza 2:1:1	39.18	44.33	43.33	44.34					
10	Suelo+Pro-Mix+Gallinaza 1:1:1	38.04	46.25	40.2	41.21					
P	Porcentaje ponderado	38.082	44.235	42.262	43.273					

Fuente: Elaboración propia.

La variable clorofila se tomó de las hojas con el uso de un equipo SPAD-502, durante el desarrollo del cultivo lo que facilita el manejo nutricional de la planta, sin necesidad de destruir las muestras con resultados inmediatos. Durante este procedimiento se tomaron en cuenta 10 tratamientos con 10 combinaciones diferentes que se fijaron al inicio de la investigación, de acuerdo con lo antes mencionado, se determina que durante los primeros 30 días el contenido de clorofila muestra un valor ponderado de 38.082, durante el transcurso de los 60 días el contenido de clorofila muestra un valor ponderado de 44.237 lo

cual indica que se observa más iluminada y ligeramente expandida, al transcurrir los 90 días del levantamiento de la información, se logra observar que el contenido de clorofila muestra un valor ponderado de 42.262 y durante los 120 días mostró un valor ponderado de 43.273. Además, para la variable de evaluación de la clorofila, el tratamiento con la mejor combinación resultó ser el de Suelo+Pro-Mix+Gallinaza 2:1:1 (Ver Anexo 1.)

Los resultados obtenidos para el contenido de clorofilas totales en la presente investigación demostraron la existencia de variabilidad significativa para este parámetro en las plántulas de cacao durante los 120 días de estudio, lo cual es el primer requisito para que pueda considerarse como una variable predictora del rendimiento.

5.2 Resultados del diámetro de la planta

Tabla 4. Análisis del diámetro de las plántulas

Tratamientos	Combinación	Diámetro de la planta							
		30 días	60 días	90 días	120 días				
1	Suelo 100%	3.48	4.35	5.25	7.91				
2	Pro-Mix 100%	3.44	4.05	4.92	6.02				
3	Suelo+Pro-mix 3:1	5.92	4.03	4.86	7.78				
4	Suelo+Pro-mix 2:1	3.43	3.98	5.04	6.14				
5	Suelo+Pro-mix 1:1	3.43	4.06	5.05	6.12				
6	Suelo+Gallinaza 1:1	3.59	4.16	5.15	6.25				
7	Pro-Mix+Gallinaza 1:1	3.55	4.09	4.84	5.94				
8	Suelo+Pro-Mix+Gallinaza 3:1:1	3.48	3.97	5.03	6.13				
9	Suelo+Pro-Mix+Gallinaza 2:1:1	3.47	4.10	4.72	5.82				
10	Suelo+Pro-Mix+Gallinaza 1:1:1	3.53	4.30	5.23	6.33				
I	Porcentaje ponderado	3.732	4.109	5.009	6.444				

Fuente: Elaboración propia.

Esta variable se midió con ayuda de una herramienta llamada pie de rey graduada en milímetros, este proceso consta de pasos fáciles mediante los cuales se obtuvo el grosor de los tallos de las plantas. De acuerdo con lo antes mencionado, en la tabla 3 se muestra el diámetro promedio durante los primeros 30 días de estudio en donde las plántulas presentaron un rango ponderado de 3.732 mm, durante el transcurso de los 60 días, un rango ponderado de 4.109 mm, durante los 90 días un rango promedio de 5.009 mm y en el transcurso de los 120 días un valor ponderado de 6.444 mm reflejando de esta manera un crecimiento significativo del 16 % entre el tiempo de estudio. Se determina que, para esta variable, el tratamiento con la mejor combinación fue la de Suelo+Pro-mix 3:1 (Ver Anexo 2.)

5.3 Resultados de la hoja de la planta

Tabla 5. Análisis de las hojas de las plántulas

Tratamientos	Combinación	Hojas de la planta							
		30 días	60 días	90 días	120 días				
1	Suelo 100%	3	6	9	5				
2	Pro-Mix 100%	3	6	9	10				
3	Suelo+Pro-mix 3:1	3	6	9	10				
4	Suelo+Pro-mix 2:1	4	6	8	10				
5	Suelo+Pro-mix 1:1	3	5	9	10				
6	Suelo+Gallinaza 1:1	4	6	9	11				
7	Pro-Mix+Gallinaza 1:1	4	6	8	9				
8	Suelo+Pro-Mix+Gallinaza 3:1:1	3	6	9	10				
9	Suelo+Pro-Mix+Gallinaza 2:1:1	4	6	8	10				
10	Suelo+Pro-Mix+Gallinaza 1:1:1	4	6	9	9				
F	Porcentaje ponderado	3	6	9	9				

Fuente: Elaboración propia.

En las hojas, se analizó mediante el uso de la visión se logró el conteo de las hojas de cada planta, por ello, de acuerdo con los resultados obtenidos, se logra determinar que las plantas

en los primeros 30 días mostraron en promedio 3 hojas, durante los 60 días se observaron en promedio 6 hojas en la planta, y en los 90 y 120 días se observaron en promedio 9 hojas en la plántula de cacao de acuerdo a las combinaciones obtenidos para los 10 tratamientos en la investigación y se determinó que el tratamiento con la mejor combinación fue el del Suelo+Gallinaza 1:1. Es importante destacar que las hojas mostraron una apariencia simple, entera y un color consistente en ambas caras. (Ver Anexo 3.)

5.4 Resultados de la altura de la planta

Tabla 6. Análisis de la altura de las plántulas

Tratamientos	Combinación	Altura de la planta							
		30 días	60 días	90 días	120 días				
1	Suelo 100%	15.19	18.01	19.79	22.36				
2	Pro-Mix 100%	14.53	16.28	19.92	23.54				
3	Suelo+Pro-mix 3:1	15.68	18.12	21.4	26.88				
4	Suelo+Pro-mix 2:1	15.13	17.31	22.30	26.34				
5	Suelo+Pro-mix 1:1	14.74	16.82	21.12	29.05				
6	Suelo+Gallinaza 1:1	16.4	18.94	24.31	30.67				
7	Pro-Mix+Gallinaza 1:1	15.9	17.80	21.34	26.85				
8	Suelo+Pro-Mix+Gallinaza 3:1:1	15.95	17.69	22.30	26.3				
9	Suelo+Pro-Mix+Gallinaza 2:1:1	15.62	17.79	22.58	25.61				
10	Suelo+Pro-Mix+Gallinaza 1:1:1	15.76	17.68	20.75	23.29				
F	Porcentaje ponderado	15.490	17.644	21.581	26.089				

Fuente: Elaboración propia.

La variable altura se midió haciendo uso de una regla graduada en centímetros, donde se llevó a cabo la acción desde la base del tallo hasta la hoja más alta. En relación con lo antes expresado, se determinó que, la plántula en los primeros 30 días muestra una altura promedio de 15.490 cm, seguido a los 60 días presentó una altura promedio de 17.644 cm, en el transcurso de los 90 días se determinó una altura de 21.581 cm y durante los 120 días se observó una altura promedio de 26.089 cm en las plántulas de cacao, además se determinó

que el tratamiento con la mejor combinación se atribuye a la del Suelo+Gallinaza 1:1. En lo referente a la altura de las plantas de cacao se observan diferencias significativas en lo estudiado durante los 120 días. (Ver Anexo 4.)

5.5 Resumen del análisis de crecimiento de las plántulas de cacao

Las tasas de crecimiento de las variables morfológicas evaluadas en las plantas de cacao en el caso de la clorofila mostraron una media ponderada de 41.82, el diámetro con una media de 4.618 cm, en el caso de las hojas con una media de 5.538 oscilando a 6 y la altura con una media de 19.427 cm por lo que, se observa que los datos de la muestra se comportan de manera normal ya que el valor del estadístico W* en cada una de las variables es cercano a uno mismos resultados se muestra en la tabla 7.

Tabla 7. Datos de tasas de crecimiento de las cuatro variables evaluadas de las plantas de cacao

Variable	Media	Desv. Stand.	W *	p (Unilateral D)
Clorofila	41.82	2.71	0.91	< 0.0001
Diámetro	4.618	1.044	0.95	< 0.0001
Hojas	5.538	2.487	0.93	< 0.0001
Altura	19.427	4.041	0.92	< 0.0001

Nota: *D.E.= Desviación estándar. Valores cercanos a 1.00 en W* indican un comportamiento Normal en los datos

5.6 Peso parte aérea y de raíz de las plántulas de cacao

Tabla 8. Estadístico sobre el peso parte aérea y peso de raíz

Variable	Media	Desv. Stand.	p (Unilateral D)
Peso parte aérea	0.948	0.053	< 0.0001

Peso raíz	22.39	5.71	< 0.0001

Fuente: Elaboración propia.

La tabla 7 muestra los resultados ponderados obtenidos a partir del peso parte aérea y de raíz en las plántulas de cacao, por tanto, el peso parte aéreo medio es de 0.948 y el peso de la raíz es de 22.39, esto al cabo de los 120 días que requirió el estudio de investigación. De acuerdo con el peso de la raíz obtenido, se logra destacar que, el crecimiento de la raíz se relaciona inversamente con la resistencia a la penetración del suelo, igualmente, la compactación del suelo puede reducir la penetración de raíces y alterar el equilibrio de la proporción de gases del suelo y la disponibilidad de agua y nutrientes para las plantas.

5.6 Análisis de correlación de las variables involucradas

Tabla 9. Estadístico de correlación de las variables evaluadas

Correlaciones

		Clorofila	Diámetro	Hojas	Altura
Clorofila	Correlación de Pearson	1.00	.503**	.748**	.529**
	Sig. (bilateral)	.000	.000	.000	.000
Diámetro	Correlación de Pearson	.503**	1.00	.024	.785**
	Sig. (bilateral)	.000	.000	.000	.000
Hojas	Correlación de Pearson	.748**	.024	1.00	.895**
	Sig. (bilateral)	.000	.000	.000	.000
Altura	Correlación de Pearson	.529**	.785**	.895**	1.00
	Sig. (bilateral)	.000	.000	.000	.000

^{**.} La correlación es significativa en el nivel 0,01 (bilateral).

De acuerdo con los resultados obtenidos para la correlación obtenida en las 4 variables (clorofila, diámetro, hojas y altura) se observa que existe relación altamente significativa, lo cual incide que las prácticas que se implementen en esta etapa son cruciales para asegurar características fisiológicas y sanitarias óptimas, garantizando árboles vigorosos para las etapas subsecuentes.

Índice de Cualidad de Dickson

ICD
$$\frac{\text{Peso parte aérea}}{\text{Altura (cm)/Diámetro (mm)} + \text{Peso parte aérea/ peso de la raiz}}$$

$$ICD \frac{0.948}{19.427(\text{cm})/4.618 \text{ (mm)} + 0.948/22.39} = 0.223$$

Los resultados para el cálculo del Índice de Cualidad de Dickson son de 0.223, es importante destacar que, este Índice expresa el equilibrio de la distribución de la masa y la robustez, evitando seleccionar plantas desproporcionadas y descartar plantas de menor altura, pero con mayor vigor (Dickson et al. 1960; Fonseca et al., 2002). De acuerdo con estudios realizados por Hunt (1990) en coníferas, un QI inferior a 0,15 podría significar problemas en el establecimiento de una plantación; García (2007), recomienda para latifoliadas un valor de QI de 0,2 como mínimo, para contenedores de hasta 60 ml, basado en resultados de plantaciones.

Relación altura y diámetro del tallo de la planta

$$RDA = \frac{19.427 \text{ cm}}{4.618 \text{ mm}} = 4.206$$

Se realizó el cálculo de la relación entre la altura y el diámetro del tallo de la planta, donde se determinó un resultado de 4.206 aplicando la formula antes presentada.

VI. CONCLUSIONES

Se evaluó el crecimiento morfológico de plantas de cacao (*Theobroma cacao L.*) en diferentes combinaciones de sustratos como ser, Suelo 100%, Pro-Mix 100%, Suelo+Promix 3:1, Suelo+Pro-mix 2:1, Suelo+Pro-mix 1:1, Suelo+Gallinaza 1:1, Suelo+Pro-Mix+Gallinaza 2:1:1 y Suelo+Pro-Mix+Gallinaza 1:1:1 con un estudio de evaluación de 120 días.

Se determinó que el mejor tratamiento que interactúa mejor con el análisis de la clorofila es el del Suelo+Pro-Mix+Gallinaza 2:1:1, en el caso del diámetro es el que se combina con el Suelo+Pro-mix 3:1, en relación con el análisis de las hojas y la altura el tratamiento con la mejor combinación se atribuye al del Suelo+Gallinaza 1:1.

Se logró determinar que, las tasas de crecimiento de las variables morfológicas evaluadas en las plantas de cacao, partiendo de la variable de la clorofila se obtuvo un valor ponderado de 41.82, el diámetro presentó un valor ponderado de 4.618 mm, la evaluación de las hojas mostró un valor ponderado de 5.538 = 6 y la altura mostró un valor ponderado de 19.427 cm por lo que, se observa que los datos de la muestra se comportan de manera normal.

Se verificó el nivel de interacción obtenida en las 4 variables (clorofila, diámetro, hojas y altura) a partir del cual se observa que existe relación altamente significativa, lo cual incide que las prácticas que se implementen en esta etapa son cruciales para asegurar características fisiológicas y sanitarias óptimas, garantizando árboles vigorosos para las etapas subsecuentes.

VII. RECOMENDACIONES

Investigar el efecto del aporte de microorganismos eficientes a los sustratos, como fuente de estimulación nutricional a la planta de cacao.

Realizar investigaciones acerca de la combinación de sustratos con diferentes hormonas de crecimiento que permitan obtener plántulas de mayor vigor.

Emplear sustrato compuesto por tierra negra + arena + gallinaza en la propagación de plántulas de cacao, con el propósito de proveer condiciones adecuadas para la propagación de cacao a partir de semilla.

Realizar las nuevas investigaciones en época lluviosa, con niveles de poda y abonando para definir su comportamiento agronómico, fisiológico, sanitario y productivo.

VIII. BIBLIOGRAFIAS

Abad, M., Martínez, P.F., Martínez, M.D. y Martínez, J. 1993. Evaluación agronómica de los sustratos de cultivo. Actas de Horticultura, 11:141-154.

Abad, M., Noguera, P. y Carrión, C. 2005. Sustratos para el cultivo sin suelo y fertirrigación. En: Cadahia, C. (Ed.) 2005. Fertirrigación. Cultivos hortícolas, frutales y ornamentales. Madrid: Ed. Mundi-Prensa. 681p.

AGRINFOR. (2003). Viveros forestales. Manual técnico para las agropecuarias y forestales en las montañas. Comisión Nacional Plan Turquino-Manatí.

Alarcón V., A.L. 2006. Diagnóstico y manejo nutricional en cultivos sin suelo. En: Alarcón V., A.L. (Coord.). Cultivos sin suelo. Compendios de Horticultura, 17. Reus: Ediciones de Horticultura S.L. pp. 69-82.

Alvarado, M. A., y Solano, J. A. (2002). Medios o Sustratos en la producción de viveros y plantas. Proyecto VIFINEX-OIRSA, Costa Rica.

Andre, J.P. 1987. Propriétés chimiques des substrats. En: Les cultures hors sol, INRA: 127-147.

Ansorena M., J. 1994. Sustratos: propiedades y caracterización. Madrid: Ediciones Mundi-Prensa. 172p Arias M., D. 2003. Utilización agrícola de derivados del mesocarpio del coco. Trabajo de grado. Departamento de Ingeniería Civil y Agrícola, Facultad de Ingeniería. Bogotá: Universidad Nacional de Colombia. 129 pp.

Armijo, Á. Á. (2015). Validación de tres métodos de propagación en cacao (Theobroma cacao L.) Nacional y trinitario en la finca experimental la represa, UTEQ". Tesis, Universidad Técnica Estatal de Quevedo, Quevedo. Recuperado el 31 de mayo de 2023, de https://repositorio.uteq.edu.ec/bitstream/43000/990/1/T-UTEQ-27.pdf

Arrieta, V. y Terés, V. 1992. Caracterización física de mezclas de sustratos a base de escoria cristalizada de horno alto, corteza de pino y turba. Actas de Horticultura, 11:77-82.

Awang, Y., Shaharon, A.S., Mohamad, R.B. and Selamat, A. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Science, 4(1):63-71.

Becerra, L. G. (2018). Extracción de los aromas de cacao por fluidos supercríticos y su incorporación en una película para su uso en alimentos. Tesis de grado, CONACYT, Jalisco, Zapopan. Recuperado el 29 de mayo de 2023, de https://ciatej.repositorioinstitucional.mx/jspui/bitstream/1023/631/1/Lucia%20Guerrero%2 0Becerra.pdf

Bravo, F. K. (2020). Efecto de la micro fermentación de cacao (Theobroma Cacao L.), variedad nacional y ccn-51, en cajas de maderas no convencionales sobre la calidad física y sensorial del licor de cacao. Tesis de grado, Universidad Técnica Estatal de Quevedo, Los Ríos, Mocache. Recuperado el 29 de mayo de 2023, de https://repositorio.uteq.edu.ec/bitstream/43000/5235/1/T-UTEQ%20-090.pdf

Bunt, A.C. 1988. Media and mixes for container-grown plants. London: Unwin Hyman Ltd. 309p.

Cadahía, C. y Eymar, E. 1992. Caracterización química y fisioquímica de sustratos. Actas de Horticultura, 11:19-25.

Carmona, E., Moreno, M.T., Pajuelo, P. y Ordovás, J. 2009. Evaluación de diversos composts de residuos agroindustriales como sustratos para el cultivo del clavel. Actas de Horticultura, 54:686-689.

Diego, L.F. 1992. Correlaciones entre la granulometría y las propiedades físicas en sustratos a partir de corteza de pino. Actas de Horticultura, 11:83-86.

Evans, M.R. and Gachukia, M. 2004. Fresh parboiled rice hulls serve as an alternative to perlite in greenhouse crop substrates. HortScience, 39:232-235.

Fonteno D., C. 1999. Sustratos: tipos y propiedades fisicoquímicas. En: Reed, D. (Ed.). Agua, sustratos y nutrición en los cultivos de flores bajo invernadero. Bogotá: Ball Publishing - HortiTecnia Ltda. pp. 93-123

Fraile, S. J., Orellana, D. S., & Rodas, E. N. (2018). Diseño de plan de marketing social para impulsar la cultura de consumo de chocolate artesanal a base de cacao, en el municipio de san salvador; aplicado a incubadora de empresas del centro nacional de tecnología agropecuaria y forestal "enrique Álvarez Có. Tesis de grado, Universidad de El Salvador, San Salvador. Recuperado el 29 de mayo de 2023, de https://ri.ues.edu.sv/id/eprint/19617/1/TESIS%20CACAO%202019.pdf

García, G., Fueyo, M-A., González, J. y Zabaleta, I. 1992. Los estériles de carbón como sustratos de cultivo hidropónico. Actas de Horticultura, 11:161-166.

Golueke, C.G. 1972. Composting: A study of the process and its principles. Emmaus: Rodale Press, Inc. 110p.

González, J. (2019). Cultivo de cacao: siembra, ventajas y desventajas. (Agro tendencia, Editor) Recuperado el 29 de mayo de 2023, de https://agrotendencia.tv/agropedia/el-cultivo-de-cacao/

González, S. D. (2002). Evaluación de la efectividad del musgo de pantano (sphagnum) como substrato para producción de pilones de café (Coffea arabica L.) en bandeja (tipo IPL 25) en Cobán, Alta Verapaz. Universidad Rafael Landívar. Tesis para obtener el título de Ingeniero Agrónomo

INFOAGRO. (2002). Tipos de sustratos de cultivos. Consultado el 18 de Julio, 2010. Disponible en http://www.infoagro.com/industria_auxiliar/tipo_sustrato2.asp

Landis, T. D., Tinus, R. W., McDonald, S. E., & Barnett, J. P. (1990). Containers and growing media. En The Container Tree Nursery Manual. Vol. 2, pág. 88, Washington D.C; U.S. Department of Agriculture, Forest Service: Agric. Handdbk. 674.

Marino, M. J. (2020). Propuesta de una línea de bebidas a partir del cacao. Tesis, Universidad Autónoma de Bucaramanga, Colombia, Bucaramanga, Colombia. Recuperado el 29 de mayo de 2023, de

https://repository.unab.edu.co/bitstream/handle/20.500.12749/12004/2020_Tesis_Julian_G arcia_Arguello.pdf?sequence=1&isAllowed=y

Martinez, F.X. 1992. Propuesta de metodología para la determinación de las propiedades físicas de los sustratos. Actas de Horticultura, 11:55-66.

Ministerio de Desarrollo Agrario y Riego. (2021). Producción y comercio mundial: Producción Mundial. Boletín de publicación trimestral n. Boletín de publicación trimestral No 01 - 2021 01 – 2021. Recuperado el 29 de mayo de 2023

Moinereau, J., Herrmann, P., Favrot, J.C. et Riviere, L.M. 1987. Les substrats. Inventaire, caractéristiques, ressources. Les cultures hors sol, INRA, París,:15-77

Noguera, P. 1999. Caracterización y evaluación agronómica del residuo de fibra de coco: un nuevo material para el cultivo en sustrato. Tesis Doctorado, Universidad Politécnica de Valencia, España.

Pastor, J. N. (1999). Utilización de sustratos en viveros. Tierra, 17 (3), pp. 231-235.

Pérez, E., Guzmán, R., Álvarez, C., Lares, M., Martínez, K., Suniaga, G., & Pavani, A. (2021). Cacao, cultura y patrimonio: un hábitat de aroma fino en Venezuela. RIVAR (Santiago), 8(22). Recuperado el 29 de mayo de 2023, de https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-49942021000100146

Quintero, M.F., González-Murillo, C.A., Flórez, V.J. and Guzmán, J.M. 2009. Physical evaluation of four substrates for cut-rose crops. Acta Horticulture, 843:349-357.

SAG (Secretaría de Agricultura y Ganadería). (2020). Cacao: Análisis de coyuntura. Documento elaborado por el Área de Estadísticas, Análisis y Estudios Económicos de la Unidad de Planeamiento y Evaluación de la Gestión (UPEG) con la cooperación del Departamento de Agricultura de los Estados Unidos de América (USDA)., FAO, Col. Loma Linda Norte, Boulevard Centroamérica Ave. Recuperado el 29 de mayo de 2023, de https://www.upeg.sag.gob.hn/wp-content/uploads/2021/07/AC-CACAO-V20.2.pdf

Sánchez, A. V., Zambrano, M. J., & Iglesias, C. (2019). La cadena de valor del cacao en América Latina y el Caribe. Plataforma multiagencia de cacao para América Latina y el Caribe: Cacao 2030-2050 (Fondo Semilla), Quito Ecuador. Recuperado el 29 de mayo de 2023, de https://repositorio.iniap.gob.ec/bitstream/41000/5382/1/Informe%20CACAO.pdf

Segura, O. (08 de diciembre de 2021). Consejo Agropecuario Centroamericano aprobó Estrategia Regional del cacao, que apuesta por la juventud, sostenibilidad y productos con valor. Recuperado el 29 de mayo de 2023, de https://latinoamerica.rikolto.org/es/noticias/consejo-agropecuario-centroamericano-aprobo-estrategia-regional-del-cacao-que-apuesta-por

Tapia, S. (2019). "Gestión del Conocimiento de la Cadena de Valor del Cacao en Centroamérica" (Guatemala, El Salvador, Honduras y Nicaragua). Situación Actual de la Cadena de Valor del Cacao en Honduras. Veco, Heifer y Suiza en América Central COSUDE. Recuperado el 29 de mayo de 2023, de https://assets.rikolto.org/paragraph/attachments/analisis_honduras.pdf

Terés, V. (2001). Relaciones aire-agua en sustrato de cultivo como base para el control de riego. Metodología de laboratorio y modelización. Universidad Politécnica de Madrid. Tesis doctoral

Terés, V., & Beunza, A. (1997). Caracterización física de los sustratos de cultivos. Horticultura, 38-41.

Valenzuela, O. R. (2001). Propiedades de la lombricomposta como sustrato. En Tratamiento integral de residuos sólidos. Universidad Nacional Entre Ríos.

Valenzuela, O., & Gallardo, C. (2005). Características de los sustratos utilizados por los viveros forestales. Universidad Entre Ríos

Van Schie, W. 1999. Standardization of substrates. Acta Horticulturae, 481:71.

Vera, C. J., & Álava, Z. C. (2020). Caracterización físico-químico y sensorial en cascarilla de cacao (Theobroma caca L.) nacional trinitario para la elaboración de una bebida alcohólica. Universidad Técnica Estatal de Quevedo, Quevedo – Los Ríos – Ecuador. Quevedo: UTEQ. Recuperado el 29 de mayo de 2023, de https://repositorio.uteq.edu.ec/handle/43000/5481

ANEXOS

Anexo 1. Resultados del análisis de clorofila de las plántulas de cacao

Mes: Enero

	Clorofila					PLAN	TAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	PROMEDIO
1	1	37.1	35.4	39.2	40.2	42.3	37.9	41	38.4	40.1	40.7	39.23
2	1	41.5	45.3	21.8	32	42.4	41	40.1	40.7	41.3	33	37.91
3	1	35.5	39.1	42.4	45.2	33.3	37.5	40.9	40.1	36.1	42.9	39.30
4	1	43.8	32.6	36	43.2	40.5	38.6	38.5	37.8	39.6	35.2	38.58
5	1	39.7	43.9	37.5	27.1	40.3	42.3	41.2	49.8	35.7	46.2	40.37
6	1	42.2	45.7	42.5	44.2	36.9	42	34.9	41.7	35.8	41.4	40.73
7	1	36.8	38.5	33.3	37.4	40.6	40.3	42.6	38.2	35.7	39.9	38.33
8	1	37.9	39.9	40.1	38.1	42	40.5	40	37.6	38.5	46.3	40.09
9	1	35.7	47	43.5	43.4	40.6	42.6	41.3	42.6	38.2	37.8	41.27
10	1	34.4	26.4	37.6	36.3	32.3	39.4	44.3	40.7	35.5	41.4	36.83
1	2	34.3	31.9	42.8	42.3	42.6	44.3	41.5	30.8	44.8	36	39.13
2	2	44.4	38.3	34.9	45.9	30.3	36.8	28	40.5	45.8	20	36.49
3	2	33.5	40.1	37.3	44.3	49.6	30	39.3	40.8	36.2	33	38.41
4	2	43.4	40.6	31.9	44.6	33	43.2	31.5	39.9	38.9	39	38.60
5	2	41.2	41.3	43.9	36.1	45	39.2	34.7	36	42	30	38.94
6	2	35	43.3	38.2	36.4	32.1	33	34	36.3	37.1	36.1	36.15
7	2	42.6	29.7	37.1	31.1	36.7	37.6	39	43.5	31.4	38	36.67
8	2	31	43.1	42.9	44.7	39.4	43.8	32.9	34.6	46.2	43.5	40.21
9	2	39.5	43.4	29.9	36.5	44.3	27.8	43.4	39.9	40	44	38.87
10	2	39.9	43	28.2	38.2	40.3	45.7	43.4	39.1	36.4	47.9	40.21
1	3	36.2	30.7.	50	33.1	35.8	36.1	39.6	32.1	43.2	39.8	38.43
2	3	36.3	42.3	38.9	36.5	41.4	39.7	35.6	30.1	40.2	34.5	37.55
3	3	34	36	34.2	44.4	30.8	41	43	32.1	32.2	42.2	36.99
4	3	38.5	41.5	37.5	27.8	30	33.6	45.2	31.7	41.9	41	36.87
5	3	33.5	42.4	34.9	35.2	37.4	34.4	32.5	34.7	39.9	40.9	36.58

6	3	31.5	30.5	33.9	30.1	31.9	39.4	31.2	38.9	40	39	34.64
7	3	32.1	34.1	38.1	37.4	34.9	46.4	44.9	36.6	37.9	30	37.24
8	3	42.8	26.6	47.1	43.1	31.9	34.6	39.1	35.1	35.8	33.1	36.92
9	3	36.1	49.5	40.6	40.5	43.7	33.9	43.1	39	41.1	43	41.05
10	3	36.9	40.3	38.6	44.6	39.8	34.9	33.1	36.1	55.3	40.3	39.99

Mes: Febrero

	Clorofila					PLAN	TAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	44.7	41.2	41	49.3	47.5	44.7	40.3	50.1	39.9	52.9	45.16
2	1	45.6	53.5	42.1	41.5	41.7	47.8	38.9	45.7	43.2	53.2	45.32
3	1	41.4	44.7	49.8	48	45.1	43.5	45.1	44.9	54.6	50.9	46.8
4	1	51.1	43.7	40.2	47.6	47.6	42.4	44.5	47.8	49.8	50.9	46.56
5	1	42.9	47.8	47.4	38.3	46.5	49.8	50.4	48.9	39.7	38.2	44.99
6	1	40.5	48.5	45.3	48.8	35.6	42.7	48.8	54.6	38.9	33.5	43.72
7	1	35.7	41.2	41.2	44.7	40.2	38.9	43.1	44.5	36.9	48.9	41.53
8	1	44.8	43.3	45.4	45.8	44.2	43.9	48.7	43.5	50.4	49.9	45.99
9	1	41.2	50.6	48.1	46.1	47.1	45.3	45.9	49.8	41.3	45.2	46.06
10	1	29.2	40.2	41.6	43.6	42.1	39.2	44.5	46.5	55.9	43.7	42.65
1	2	43.9	39	36.7	40	35.4	33.4	38.5	42.9	44.4	41.3	39.55
2	2	46.4	42.5	45.1	48.6	38.3	42.3	47.6	50.3	41.9	43.4	44.64
3	2	45.7	46.7	38.3	47.4	49.1	44.5	39.4	48.9	43.2	49.8	45.3
4	2	41.1	42.5	57.2	46.3	43.6	45.2	39.5	42.8	38.5	48.4	44.51
5	2	54.9	46.7	52.6	43.4	55.2	48.1	52.4	53.8	49.8	49.9	50.68
6	2	38.6	44.8	47.2	44.9	45.5	42.8	45.3	49.4	50.2	49.3	45.8
7	2	39.8	41.2	41.8	50.2	44.3	46.2	40.6	51.1	33.8	44.8	43.38
8	2	40.4	46.8	47.7	47.8	40.5	48.9	49.2	38.9	45.4	48.5	45.41
9	2	43.2	49.8	39.9	40.1	49.5	39	33.5	39.5	39.5	47.9	42.19
10	2	45.3	39.3	40.4	40.7	46.2	41.8	40.4	50.2	40.7	45.8	43.08
1	3	41.4	38.1	45.1	37.4	42.2	49.7	45.5	49.3	51.6	46.8	44.71

2	3	46.6	35.7	40.7	45.9	50.8	52.5	50.3	41	49.6	50.4	46.35
3	3	36.2	40.4	44	43.6	40.9	49.5	39.5	38.7	40.9	49.2	42.29
4	3	44	47.3	42.9	37.9	39.1	40	46.7	49.7	37.5	43.4	42.85
5	3	40.9	47.3	41.7	45	53.6	39.9	47.3	45.9	54.9	39.4	45.59
6	3	40	46	40	34.8	40	54.8	44.6	54	49.3	47.5	45.1
7	3	41.6	32.5	41.4	30.8	37.2	48.2	52.4	39.6	44.3	49.5	41.75
8	3	49	38.9	53.1	40.3	38.8	38.6	49.8	49.1	51.3	44.2	45.31
9	3	44.7	54	39.8	34.4	43.4	47.6	50	39.7	44.4	47.9	44.59
10	3	42.1	41.7	43.9	49.5	50.1	45.8	33.8	48.2	39.5	39.9	43.45

Mes: Marzo

	Clorofila					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	ROMEDIO
1	1	45.7	50	43	42.9	43.5	45.3	43.8	48.1	48.1	43.4	45.38
2	1	39.5	41.9	31.7	49.5	43	49.1	47.6	51.5	41.6	36.1	43.15
3	1	44	45.5	41	42	51.2	35.1	38.7	41.4	45.2	39.5	42.36
4	1	49.1	43.3	45.2	40.1	52.1	49.6	46.2	45.8	43.8	41.4	45.66
5	1	48.5	31.2	41.4	44.8	48.1	43.1	41.4	46.9	38.8	34.3	41.85
6	1	35.6	44	38.3	42.1	21.9	34.5	21.2	36.8	50.4	49.3	37.41
7	1	40	41.8	44.8	41.2	33.9	30.6	45.2	41.1	45.2	32.2	39.60
8	1	36.4	46.5	42.8	42.1	39.2	49.5	41.8	49.8	44	44.6	43.67
9	1	41.4	52.6	50.5	46.4	52.1	53.1	50.7	51.4	51.6	38.5	48.83
10	1	33.2	41.2	45.1	41.6	45.6	36.6	50.2	28.4	39.1	40.1	40.11
1	2	41.1	49.5	41.8	41.2	54.1	51	44.4	42.5	48.1	39.9	45.36
2	2	50.1	40.7	41.6	43.8	31	46.6	35	41.8	49.9	40.1	42.06
3	2	41.6	41.9	39.9	51.4	38	48.1	40.3	52.1	45.3	49.5	44.81
4	2	40.5	50.2	53.4	49.5	44	41	43	49.2	41.5	44.3	45.66
5	2	52.3	31.1	31.4	36.8	54.5	41	45.9	42.9	41.5	43.4	42.08
6	2	45.1	46.7	40.1	40.9	48.1	33.1	35.8	41.5	29.9	35.2	39.64
7	2	31.9	42.4	39.8	43.2	31.8	50.1	45.6	30.1	44.4	45.9	40.52

8	2	35.8	50.4	41	48.2	36.5	40.8	38	38.9	54.6	50.3	43.45
9	2	46.3	41.9	33.6	43.4	39.1	38.9	49.1	51.6	49.1	44.4	43.74
10	2	46.4	51.9	39.4	44.3	49.4	48.3	54.1	33.1	46.3	42.9	45.61
1	3	43.3	53.3	42.1	35.9	41.9	50.9	50	49.1	38	42.1	44.66
2	3	40.2	41.8	44	41.9	42.9	42.8	49.5	46	49	32.6	43.07
3	3	48.3	48.9	41.9	48	44.1	53.4	44.4	31.2	38.5	36	43.47
4	3	41.3	30.6	39.9	40.1	31	43.9	48	31.2	28.5	29.9	36.44
5	3	31.1	45.1	44.1	43.1	31	45.3	39.2	45.1	38.2	39.6	40.18
6	3	38.1	43	32.8	30.1	42	38.5	42.3	53	45.9	46.1	41.18
7	3	41.3	41.8	27.1	29.6	40.1	49	49.6	51.4	30.4	36.8	39.71
8	3	51.2	39.2	44.8	44.8	40.6	40.8	45.9	44.1	45.4	40.8	43.76
9	3	49.4	49.6	36.1	36.9	39.5	44.3	54.4	49.1	52.1	35.2	44.66
10	3	48.3	44.4	45.5	45.2	36.8	42	46.4	40.4	51.3	41.4	44.17

Mes: Abril

	Clorofila					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	T ROWLEDIO
1	1	46.7	51	44	43.9	44.5	46.3	44.8	49.1	49.1	44.4	46.38
2	1	40.5	42.9	32.7	50.5	44	50.1	48.6	52.5	42.6	37.1	44.15
3	1	45	46.5	42	43	52.2	36.1	39.7	42.4	46.2	40.5	43.36
4	1	50.1	44.3	46.2	41.1	53.1	50.6	47.2	46.8	44.8	42.4	46.66
5	1	49.5	32.2	42.4	45.8	49.1	44.1	42.4	47.9	39.8	35.3	42.85
6	1	36.6	45	39.3	43.1	22.9	35.5	22.2	37.8	51.4	50.3	38.41
7	1	41	42.8	45.8	42.2	34.9	31.6	46.2	42.1	46.2	33.2	40.6
8	1	37.4	47.5	43.8	43.1	40.2	50.5	42.8	50.8	45	45.6	44.67
9	1	42.4	53.6	51.5	47.4	53.1	54.1	51.7	52.4	52.6	39.5	49.83
10	1	34.2	42.2	46.1	42.6	46.6	37.6	51.2	29.4	40.1	41.1	41.11
1	2	42.1	50.5	42.8	42.2	55.1	52	45.4	43.5	49.1	40.9	46.36
2	2	51.1	41.7	42.6	44.8	32	47.6	36	42.8	50.9	41.1	43.06
3	2	42.6	42.9	40.9	52.4	39	49.1	41.3	53.1	46.3	50.5	45.81

4	2	41.5	51.2	54.4	50.5	45	42	44	50.2	42.5	45.3	46.66
5	2	53.3	32.1	32.4	37.8	55.5	42	46.9	43.9	42.5	44.4	43.08
6	2	46.1	47.1	41.1	41.9	49.1	34.1	36.8	42.5	30.9	36.2	40.58
7	2	32.9	43.4	40.8	44.2	32.8	51.1	46.5	31.1	45.4	46.9	41.51
8	2	36.8	51.4	42	49.2	37.5	41.8	39	39.9	55.6	51.3	44.45
9	2	47.3	42.9	34.6	44.4	40.1	39.9	50.1	52.6	50.1	45.4	44.74
10	2	47.4	52.9	40.4	45.3	50.4	49.3	55.1	34.1	47.3	43.9	46.61
1	3	44.3	54.3	43.1	36.9	42.9	51.9	51	50.1	39	43.1	45.66
2	3	41.2	42.8	45	42.9	43.9	43.8	50.5	47	50	33.6	44.07
3	3	49.3	49.9	42.9	49	45.1	54.4	45.4	32.2	39.5	37	44.47
4	3	42.3	31.6	40.9	41.1	32	44.9	49	32.2	29.5	30.9	37.44
5	3	32.1	46.1	45.1	44.1	32	46.3	40.2	46.1	39.2	40.6	41.18
6	3	39.1	44	33.8	31.1	43	39.5	43.3	54	46.9	47.1	42.18
7	3	42.3	42.8	28.1	30.6	41.1	50	50.6	52.4	31.4	37.8	40.71
8	3	52.2	40.2	45.8	45.8	41.6	41.8	46.9	45.1	46.4	41.8	44.76
9	3	50.4	50.6	37.1	37.9	40.5	45.3	55.4	50.1	53.1	36.2	45.66
10	3	49.3	45.4	46.5	46.2	37.8	43	47.4	41.4	52.3	42.4	45.17

Anexo 2. Resultados del análisis del diámetro de las plántulas de cacao

Mes: Enero

	Diámetro					PLA	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	PROMEDIO
1	1	3.58	3.48	3.11	2.97	3.9	3.54	4.99	3.74	3.84	3.74	3.69
2	1	3.36	3.85	3.24	3.72	3.98	3.16	3.24	3.46	3.52	3.36	3.49
3	1	3.45	3.91	3.16	3.67	3.7	3.68	4.36	3.8	3.88	3.42	3.70
4	1	3.62	3.79	3.03	4.45	3.2	3.26	3.21	3.41	3.43	3.02	3.44
5	1	4.39	3.96	3	3.09	3.17	4.2	3.07	3.72	3.09	3.41	3.51
6	1	3.1	2.93	3.8	3.75	3.3	3.72	3.33	3.3	3.33	2.89	3.35
7	1	3.47	3.48	3.13	3.45	2.58	3.33	3.65	3.75	3.52	3.71	3.41
8	1	3.19	4.09	3.52	3.95	3.51	4.48	3.43	3.69	3.18	4.09	3.71
9	1	3.91	3.35	3.7	3.4	4.4	3.34	3.94	3.78	3.84	3.86	3.75
10	1	2.98	3.41	3.55	3.31	2.98	3.45	3.55	3.06	3.69	4.2	3.42
1	2	3.42	3.18	3.13	2.95	3.07	3.3	2.94	3.1	3.08	3.09	3.13
2	2	3.42	3.29	3.27	3.04	3.34	3.7	3.35	3.9	3.15	4.1	3.46
3	2	3.4	3.01	3.34	3.15	3.74	3.98	3.25	3.95	3.13	3.6	3.46
4	2	3.48	3.9	3.34	3.16	3.92	3.51	3.58	3.19	3.2	3.88	3.52
5	2	3.53	3.36	3.23	3.02	3.69	3.97	3.29	2.8	3.52	3.35	3.38
6	2	3.03	2.7	3.18	3.45	3.31	3.91	3	3.48	3.41	3.46	3.29
7	2	3.41	3.39	3.37	3.69	2.9	3.38	3.21	3.51	3.72	3.25	3.38
8	2	3.54	3.5	3.35	2.2	3.18	3.79	3.43	2.84	3.05	2.94	3.18
9	2	3.91	3.55	3.09	3.83	3.55	3.31	4.15	3.34	4.03	3.07	3.58
10	2	3.15	3.63	3.6	3.53	3.4	3.78	3.53	2.29	3.48	3.38	3.38
1	3	4.04	3.24.	3.03	3.39	3.16	3.77	3.91	3.47	3.43	3.79	3.55
2	3	2.85	3.29	4.23	3.54	3.59	3.65.	3.23.	3.68	3.11	3.83	3.52
3	3	3.59	3.22	3.18	3.77	3.7	3.63	3.04	3.98	3.42	3.62	3.52
4	3	3.67	4.03	4.95	3.6	3.08	3.48	3.53.	3.14	3.38	3.58	3.66
5	3	3.44	3.15	3.37	3.19	3.34	3.64	3.44.	3.44	3.05	4.14	3.42
6	3	3.43	3.34	81	3.81	3.02	2.94	3.32	3.16	4.26	2.93	11.12

7	3	3.45	2.8	2.94	3.78	3.27	3.27	3.99	3.68	3.2	3.53	3.39
8	3	3.38	3.36	3.25	3.1	3.17	3.97	4.01	4	3.9	3.2	3.53
9	3	3.61	3.01	3.33	3.74	3.76	3.3	3.62	3.94	3.46	3.17	3.49
10	3	3.46	3.91	2.29	3.24	3.85	3.24	3.35	3.78	3.71	4.3	3.51

Mes: Febrero

	Diámetro					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	4.19	4.43	4.09	3.46	4.19	4.24	5.61	4.44	4.4	4.25	4.33
2	1	4.08	4.59	4.08	4.06	4.59	3.92	4	4.11	3.62	4.14	4.119
3	1	4.34	4.06	3.66	3.82	4.13	3.6	4.64	3.69	4.64	3.98	4.056
4	1	4.22	4.2	3.95	4.73	3.53	4.28	3.48	3.65	4.02	3.5	3.956
5	1	5.14	4.64	3.65	3.6	3.96	4.9	3.72	3.76	3.32	3.82	4.051
6	1	3.42	3.08	4.25	3.73	3.76	3.84	3.61	3.57	3.7	5.18	3.814
7	1	4.02	3.65	3.47	4.19	2.66	3.57	4.22	4	3.96	4.06	3.78
8	1	3.87	4.71	4.41	4.95	4.15	5.15	3.72	4.33	3.83	4.99	4.411
9	1	4.16	3.65	3.99	2.82	5.86	4.46	4.39	3.83	4.54	4.59	4.229
10	1	3.93	4.01	4.47	3.98	3.64	4.32	4.41	3.35	4.48	4.67	4.126
1	2	4.92	3.97	3.67	3.5	3.65	3.61	3.89	4.05	3.62	4.28	3.916
2	2	4.59	4.34	4.37	3.78	4.24	4.33	4.6	4.9	4.34	5.19	4.468
3	2	4.4	4.17	4.12	3.89	4.02	4.6	4.17	4.4	3.89	4.31	4.197
4	2	4.03	4.29	4.28	4.01	4.39	4.22	3.91	3.68	3.9	4.8	4.151
5	2	4.29	4.03	3.53	3.55	4.46	4.51	3.81	3.54	4.3	4.6	4.062
6	2	3.63	3.57	3.78	4.38	3.86	3.91	3.29	4.05	4.44	4.42	3.933
7	2	4.13	4.46	4.42	3.9	4.44	4.46	3.91	3.1	3.73	4.56	4.111
8	2	4.07	3.9	3.69	3.7	3.63	4.57	3.77	3.55	3.75	3.82	3.845
9	2	4.58	3.86	4.23	4.71	4.22	4.2	4.31	4.43	4.91	3.45	4.29
10	2	3.82	4.43	3.85	4.29	4.19	4.14	4.32	3.07	4.37	4.21	4.069
1	3	5.18	3.65	4.17	3.44	3.99	4.14	4.08	4.29	3.98	3.71	4.063
2	3	3.64	3.96	4.97	4.83	4.4	4.3	4.68	4.74	3.73	4.67	4.392

3	3	3.26	4.28	3.79	4.25	4.26	4.1	3.27	4.29	4.4	4.32	4.022
4	3	4.31	4.67	5.64	4.8	3.49	3.86	3.88	3.68	3.9	4.69	4.292
5	3	4.45	3.84	4.21	3.83	4.07	4.29	4.09	3.75	3.54	4.84	4.091
6	3	3.95	3.42	3.44	3.99	3.65	3.39	4.24	4.05	4.92	3.45	3.85
7	3	3.7	3.65	2.82	3.62	3.3	3.65	3.92	3.66	3.72	4.64	3.668
8	3	4.29	3.65	3.71	3.78	3.62	4.44	4.4	4.71	5.16	3.82	4.158
9	3	3.79	3.63	3.82	4.15	4.46	3.69	4.17	4.31	4.08	3.54	3.964
10	3	9.95	4.83	4.27	3.68	5.04	4.03	4.08	3.98	3.93	4.43	4.822

Mes: Marzo

	Diámetro				P	LAN	ΓAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	5.C722	4.48	5.4	3.45	4.36	6.41	6.92	5.78	5.24	5.35	5.27
2	1	5.91	4.36	7.6	4.24	6	4.15	4.21	5.29	5.25	6.12	5.31
3	1	4.47	4.42	5.23	4.62	5.51	5.54	5.74	3.91	4.9	6.4	5.07
4	1	3.71	4.93	3.94	3.92	4.3	4.26	3.6	6.51	4.53	4.92	4.46
5	1	6.52	4.24	3.48	5.2	4.65	4.95	3.67	4.98	3.96	6.16	4.78
6	1	5	5.65	4.67	5.31	4.77	4.33	4.25	2.79	2.5	5.97	4.52
7	1	5.94	3.71	5.66	5.53	6.98	5.11	3.66	4.26	3.81	4.54	4.92
8	1	4.27	4.93	4	4.64	3.97	7.13	6.99	5.84	3.85	5.6	5.12
9	1	4.7	4.4	4.3	5.15	6.55	4.38	4.37	4.32	5.14	5.62	4.89
10	1	3	4	4.21	4.23	3.35	4.35	4.72	4.17	5.98	5.78	4.38
1	2	5.24	5.54	5.66	4.57	5.61	6.19	5.2	5.45	3.87	4.61	5.19
2	2	6.12	5.77	5.75	5.73	4.73	6	6	5.7	5.6	6.46	5.79
3	2	4.68	5.69	5.87	5.4	4.28	6.45	6.59	6.15	4.44	5.1	5.47
4	2	5.78	5.27	4.39	4.33	5.47	4.52	6.2	3.86	4.57	5.27	4.97
5	2	5.68	5.65	3.83	5.2	6.95	5.69	4.73	4.23	5.65	5.47	5.31
6	2	4.59	4.53	5.1	4.15	3.53	3.7	2.95	4.35	4.55	4.91	4.24
7	2	5.74	5.41	4.13	5.13	4.33	5.54	5.56	5.23	5.54	3.67	5.03
8	2	5.34	4.67	4.91	5.18	5.16	5.2	4.9	4.99	5.34	3.79	4.95

9	2	5.9	4.63	4.91	6.74	5.72	5.39	4.21	6.23	5.18	4	5.29
10	2	5.58	4.41	4.32	3.53	4.17	4.55	5.5	5.85	4.29	4.13	4.63
1	3	4.31	4.58	4.32	4.35	5.78	5.6	4.78	5.13	4.36	4.9	4.81
2	3	5.91	5.33	6.11	5.67	4.76	4.95	4.14	5.46	4.35	5.17	5.19
3	3	5.27	5.28	4.96	5.99	6	5.4	4.02	5.03	4.3	6.89	5.31
4	3	5.47	5.59	5.48	7.1	3.4	3.78	4	4.62	4.54	4.67	4.87
5	3	5.83	4.65	5.49	5.9	5.15	5.1	5.15	5.5	4.73	5	5.25
6	3	5.11	4.54	3.98	4.65	4.94	4.45	3.79	4.98	5.23	5.42	4.71
7	3	5.87	4.99	3.53	4.33	4.6	4.91	3.77	4.88	4.77	6.32	4.80
8	3	5.75	4.79	5.21	5.12	4.95	5.81	4.2	5.51	5.29	3.71	5.03
9	3	4.92	4.9	5.3	6.48	6.15	4.81	5.86	5.4	5.47	4.76	5.41
10	3	5.77	6.15	4.04	5.28	5.24	5.71	5.39	4.38	4.37	6.17	5.25

Mes: Abril

	Diámetro					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	ROMEDIO
1	1	53.1	5.58	6.5	4.55	5.46	7.51	8.02	6.88	6.34	6.45	11.04
2	1	7.01	5.46	8.7	5.34	7.1	5.25	5.31	6.39	6.35	7.22	6.41
3	1	5.57	5.52	6.33	5.72	6.61	6.64	6.84	5.01	6	7.5	6.17
4	1	4.81	6.03	5.04	5.02	5	5.36	4.7	7.61	5.63	6.02	5.52
5	1	7.62	5.34	4.58	6.3	5.4	6.05	4.77	6.08	5.06	7.26	5.85
6	1	6.1	6.75	5.77	6.41	5.87	5.43	5.35	3.89	3.6	7.07	5.62
7	1	7.04	4.81	6.76	6.63	8.08	6.21	4.76	5.36	4.91	5.64	6.02
8	1	5.37	6.03	5.1	5.74	5.07	8.23	8.09	6.94	4.95	6.7	6.22
9	1	5.8	5.5	5.4	6.25	7.65	5.48	5.47	5.42	6.24	6.72	5.99
10	1	4.1	5.1	5.31	5.33	4.45	5.45	5.82	5.27	7.08	6.88	5.48
1	2	6.34	6.64	6.76	5.67	6.71	7.29	6.3	6.55	4.97	5.71	6.29
2	2	7.22	6.87	6.85	6.83	5.83	7.1	7.1	6.8	6.7	7.56	6.89
3	2	5.78	6.79	6.97	6.5	5.38	7.55	7.69	7.25	5.54	6.2	6.57
4	2	6.88	6.37	5.49	5.43	6.57	5.62	7.3	4.96	5.67	6.37	6.07

5	2	6.78	6.75	4.93	6.3	8.05	6.79	5.83	5.33	6.75	6.57	6.41
6	2	5.69	5.63	6.2	5.25	4.63	4.8	4.05	5.45	5.65	6.01	5.34
7	2	6.84	6.51	5.23	6.23	5.43	6.64	6.66	6.33	6.64	4.77	6.13
8	2	6.44	5.77	6.01	6.28	6.26	6.3	6	6.09	6.44	4.89	6.05
9	2	7	5.73	6.01	7.84	6.82	6.49	5.31	7.33	6.28	5.1	6.39
10	2	6.68	5.51	5.42	4.63	5.27	5.65	6.6	6.95	5.39	5.23	5.73
1	3	5.41	5.68	5.42	5.45	6.88	6.7	5.88	6.23	5.46	6	5.91
2	3	7.01	6.43	7.21	6.77	5.86	6.05	5.24	6.56	5.45	6.27	6.29
3	3	6.37	6.38	60.6	7.09	7.1	6.5	5.12	6.13	5.4	7.99	11.87
4	3	6.57	6.69	6.58	8.2	4.5	4.88	5.1	5.72	5.64	5.77	5.97
5	3	6.93	5.75	6.59	7	6.25	6.2	6.25	6.6	5.83	6.1	6.35
6	3	6.21	5.64	5.08	5.75	6.04	5.55	4.89	6.08	6.33	6.52	5.81
7	3	6.97	6.09	4.63	5.43	5.7	6.01	4.87	5.98	5.87	7.42	5.90
8	3	6.85	5.89	6.31	6.22	6.05	6.91	5.3	6.61	6.39	4.81	6.13
9	3	6.02	6	6.4	7.58	7.25	5.91	6.96	6.5	6.57	5.86	6.51
10	3	6.87	7.25	5.14	6.38	6.34	6.81	6.49	5.48	5.47	7.27	6.35

Anexo 3. Resultados del análisis de las hojas de las plántulas de cacao

Mes: Enero

	Hojas					PLA	ANTA	AS				PDOMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	PROMEDIO
1	1	3	4	4	2	3	4	4	4	4	4	3.60
2	1	4	5	3	3	4	3	4	4	4	5	3.90
3	1	4	3	4	4	4	2	3	3	3	4	3.40
4	1	4	2	3	3	4	4	4	4	4	4	3.60
5	1	4	4	3	4	4	4	3	4	3	4	3.70
6	1	3	1	3	1	4	4	3	2	3	5	2.90
7	1	2	3	4	4	1	4	3	3	4	3	3.10
8	1	5	4	4	4	4	4	3	5	3	4	4.00
9	1	5	3	4	4	4	4	4	2	3	4	3.70
10	1	3	3	4	4	2	4	3	3	4	4	3.40
1	2	4	3	3	4	3	4	4	4	3	0	3.20
2	2	4	3	3	4	4	3	5	4	5	3	3.80
3	2	4	4	5	4	3	2	2	4	3	5	3.60
4	2	4	4	4	4	3	4	4	4	4	5	4.00
5	2	5	4	4	4	3	3	4	3	3	4	3.70
6	2	3	4	4	5	2	2	1	4	3	3	3.10
7	2	5	4	2	3	3	4	4	4	4	4	3.70
8	2	3	4	4	3	4	4	3	3	4	4	3.60
9	2	4	2	5	3	3	4	5	4	3	4	3.70
10	2	4	4	3	4	4	3	4	3	5	4	3.80
1	3	2		4	1	3	1	3	5	4	2	2.78
2	3	3	1	0	4	3	4	5	4	2	4	3.00
3	3	2	2	4	5	4	4	4	4	4	4	3.70
4	3	2	3	2	4	2	4	1	2	2	5	2.70
5	3	4	4	4	4	4	4	5	4	4	4	4.10
6	3	0	2	2	3	4	4	3	3	4	1	2.60

7	3	3	2	1	2	0	3	2	0	2	3	1.80
8	3	3	2	4	3	2	3	5	4	4	1	3.10
9	3	1	4	3	5	5	4	3	3	5	3	3.60
10	3	4	4	4	4	4	4	5	3	4	4	4.00

Mes: Febrero

	Hojas					PL	ANTA	AS				PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	6	6	7	7	3	6	6	6	6	6	5.90
2	1	6	7	6	5	6	5	6	6	7	8	6.20
3	1	6	5	6	6	7	7	7	5	6	6	6.10
4	1	7	7	6	6	7	6	6	6	7	6	6.40
5	1	6	6	7	6	6	7	6	6	5	6	6.10
6	1	4	2	5	7	6	7	6	5	5	5	5.20
7	1	5	6	7	7	2	7	6	6	6	5	5.70
8	1	8	6	6	7	8	7	5	8	8	5	6.80
9	1	7	5	6	7	8	6	7	7	6	7	6.60
10	1	7	6	7	7	4	6	5	5	7	6	6.00
1	2	7	6	5	6	5	7	7	6	5	5	5.90
2	2	6	6	7	7	7	7	6	7	7	5	6.50
3	2	9	6	8	7	5	5	3	7	5	8	6.30
4	2	7	6	6	6	6	7	7	6	8	7	6.60
5	2	7	6	6	6	5	10	6	6	6	6	6.40
6	2	7	6	5	6	5	7	7	6	5	5	5.90
7	2	7	6	7	8	7	6	6	6	7	6	6.60
8	2	6	6	6	5	6	7	6	6	6	7	6.10
9	2	6	7	7	8	6	7	7	7	5	6	6.60
10	2	6	6	5	6	6	5	7	7	7	6	6.10
1	3	5	7	6	5	5	4	5	6	6	4	5.30
2	3	6	5	6	8	5	6	6	6	5	6	5.90

3	3	5	6	5	8	8	7	5	6	8	6	6.40
4	3	5	6	6	6	3	6	7	5	6	7	5.70
5	3	7	8	6	7	8	7	9	7	7	7	7.30
6	3	8	4	5	4	6	6	7	4	6	4	5.40
7	3	3	7	4	4	6	6	5	3	6	5	4.90
8	3	5	5	6	6	6	5	8	6	6	5	5.80
9	3	7	6	6	8	6	6	7	7	4	7	6.40
10	3	6	7	6	6	6	6	7	6	7	5	6.20

Mes: Marzo

	Hojas					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	ROWLDIO
1	1	6	6	8	4	9	6	6	8	7	6	6.60
2	1	9	13	7	7	10	8	8	8	6	10	8.60
3	1	8	8	6	6	7	7	7	8	8	7	7.20
4	1	8	7	8	7	10	8	9	10	8	6	8.10
5	1	8	9	10	8	9	10	6	8	7	9	8.40
6	1	9	10	10	9	7	9	7	9	6	6	8.20
7	1	7	8	10	9	7	9	7	9	8	6	8.00
8	1	11	9	9	10	12	11	8	10	10	9	9.90
9	1	9	8	9	9	9	8	9	9	10	9	8.90
10	1	9	9	9	10	6	9	8	7	10	10	8.70
1	2	7	7	7	9	9	11	8	8	6	9	8.10
2	2	10	9	11	7	10	10	12	10	9	9	9.70
3	2	11	9	11	10	9	5	6	7	8	8	8.40
4	2	9	9	7	8	8	11	11	10	12	11	9.60
5	2	7	10	10	11	10	5	4	7	7	6	7.70
6	2	10	9	8	9	8	14	7	10	9	8	9.20
7	2	10	10	10	11	10	8	8	7	10	11	9.50
8	2	9	8	9	8	5	8	8	11	6	8	8.00

9	2	8	8	10	8	8	8	8	11	7	10	8.60
10	2	9	10	7	8	9	7	8	10	9	11	8.80
1	3	8	7	8	6	6	5	10	7	5	9	7.10
2	3	9	8	10	12	9	10	12	14	8	8	10.00
3	3	11	8	8	11	8	10	9	7	12	9	9.30
4	3	6	7	9	6	7	9	9	8	9	7	7.70
5	3	7	9	8	7	11	8	7	10	11	10	8.80
6	3	10	6	8	6	9	9	9	10	7	9	8.30
7	3	7	10	6	5	8	10	8	6	7	9	7.60
8	3	7	8	10	10	8	8	8	8	8	8	8.30
9	3	8	7	9	9	12	10	8	9	9	12	9.30
10	3	9	9	8	9	9	8	10	9	10	8	8.90

Mes: Abril

	Hojas					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	ROWLDIO
1	1	6	6	8	10	14	13	11	10	8	6	9.2
2	1	11	13	13	9	13	14	12	10	10	12	11.7
3	1	10	13	11	10	10	14	10	9	12	13	11.2
4	1	7	12	10	10	15	12	10	11	12	7	10.6
5	1	10	9	13	10	10	11	8	9	8	10	9.8
6	1	6	7	11	10	8	10	8	5	5	10	8
7	1	10	11	12	12	7	12	8	13	11	5	10.1
8	1	11	12	13	11	13	15	7	14	12	9	11.7
9	1	11	11	12	11	13	13	11	13	12	11	11.8
10	1	10	8	9	9	8	11	10	6	11	10	9.2
1	2	1	7	10	12	11	14	8	10	6	8	8.7
2	2	11	12	11	11	7	10	8	10	11	9	10
3	2	9	12	15	15	13	8	9	13	11	8	11.3
4	2	10	10	9	9	11	11	12	10	13	13	10.8

5	2	9	10	10	8	8	17	8	11	10	8	9.9
6	2	1	13	13	13	13	6	5	5	8	9	8.6
7	2	12	10	9	13	8	12	11	7	13	11	10.6
8	2	10	12	12	10	8	13	11	12	12	10	11
9	2	11	8	13	16	12	9	11	10	10	10	11
10	2	9	9	8	9	13	11	12	13	11	11	10.6
1	3	9	9	11	9	10	9	6	12	8	5	8.8
2	3	10	10	11	13	11	10	11	12	13	9	11
3	3	12	13	11	14	12	10	13	7	11	10	11.3
4	3	1	6	9	8	8	13	10	9	10	9	8.3
5	3	10	11	8	7	10	9	8	11	12	10	9.6
6	3	18	8	7	5	10	11	11	11	11	7	9.9
7	3	10	17	8	8	13	13	14	10	8	8	10.9
8	3	8	9	14	9	13	10	10	10	9	9	10.1
9	3	16	10	12	14	17	15	12	16	17	11	14
10	3	12	11	10	11	11	10	13	9	13	8	10.8

Anexo 4. Resultados del análisis de la altura de las plántulas de cacao

Mes: Enero

	Altura					PLAN	NTAS					DROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	PROMEDIO
1	1	18.5	17	16	10.5	13	17.5	17.5	17.5	15.5	19.5	16.25
2	1	18.5	18	18.5	14.5	18	12.5	19	16.5	15.5	19	17.00
3	1	14.5	15.5	16.5	18.5	13.5	15.5	16	15.5	18.5	16.5	16.05
4	1	18	18	18	20	16	16	17.5	18.5	17.5	15	17.45
5	1	17.5	17	13.5	11.5	17	20.5	17.5	17.5	14.5	16.5	16.30
6	1	16.5	11.5	18	11	18	15.5	12	12	15	15	14.45
7	1	18.5	14	17.5	13.5	8.5	13.5	14	14	17	12	14.25
8	1	17.5	18.5	17.5	17	16.3	18.9	15.3	15.3	16.2	21	17.35
9	1	16.5	15	16.9	16.6	22	19.4	18.1	18.1	19	17	17.86
10	1	16	13	17.5	17	14.4	17.9	17.6	17.6	19.5	17.1	16.76
1	2	17.6	15.4	17	14.6	16	16.1	17.5	17.5	16.4	14.5	16.26
2	2	15.1	17.2	16.5	15.4	15.6	17.4	14.6	15.1	19	15.9	16.18
3	2	13.2	17.5	17.4	16.1	17.5	19	14.1	21.4	17.1	20	17.33
4	2	17.6	17	21.1	18.1	20.4	19.5	18.4	17.5	15.1	18.5	18.32
5	2	20.4	19.6	16.1	18.1	21.3	17		13.9	17.4	19.1	18.10
6	2	14.6	13.1	18.4	17	16.4	16	14.1	12.2	17	13	15.18
7	2	17.1	16.5	18.5	16	9.4	18.9	20	15.6	19	16.4	16.74
8	2	16.6	15.4	20	17	13.5	18.4	15.4	15.6	16.6	15.4	16.39
9	2	21.6	17.4	17.1	18.4	18.5	18.4	18	18.6	17	13.5	17.85
10	2	16	17.5	17.6	19.8	14.4	16.3	20	15	14.1	13.6	16.43
1	3	10		13.1	14.3	13.7	14.9	16.5	15.1	15.6	17.5	14.52
2	3	13.3	14.2	17.1	15.3	14.6	17.3	16.3	18.8	10.6	19.9	15.74
3	3	6.1	9.6	13.9	14	14.6	15.5	10	16	14.1	16.1	12.99
4	3	14.1	14.6	15.5	14.3	10	11.3	17.6	15.5	14.7	15.4	14.30
5	3	13.6	8.6	17.1	16.2	14.7	17.7	17.5	17.2	14.1	15	15.17
6	3	13.6	15.5	10.6	10.7	17.4	12.6	11	13.5	14.4	15.5	13.48

7	3	17.5	9	8.3	10	9.5	15.6	16	13.7	11.9	13.5	12.50
8	3	18.1	13.5	14.1	19.2	18	18	16.6	18.7	18.7	13	16.79
9	3	15.5	12.3	16.6	21.1	16.6	16.6	17.7	17.5	13.5	12.6	16.00
10	3	17.9	20.2	11.9	16.2	17.8	17.7	17.7	15.8	13.6	16.1	16.49

Mes: Febrero

	Altura					PLAN	NTAS					PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	20	19.5	17	11.5	14	18	19	19	16	21.5	17.55
2	1	18.5	19.5	18.5	15.5	19	14.5	20	18	19.5	20	18.30
3	1	15	16	19	19.5	14.5	16.5	17.5	16	19.5	17.5	17.10
4	1	20.5	21	21	21.5	22	18.5	21	22.5	19.5	16	20.35
5	1	18.5	18	15	14.5	19.5	24	21	16	19	19.5	18.50
6	1	17.3	12.1	19.4	15.2	19.1	17.5	14	13.5	16.5	15.5	16.01
7	1	20.6	15.7	20.6	17.9	9.2	20.4	15.1	19.3	20.6	12.9	17.23
8	1	17.4	20.6	19.2	19.4	20.9	21.6	18.6	23.2	19.4	22.4	20.27
9	1	18.5	16.6	19.6	19.9	23.6	21.6	19.9	17.6	20	18.2	19.55
10	1	17.7	14.5	19.2	18.1	15.3	20.1	19.1	10.9	19.9	18.1	17.29
1	2	19.5	17	19.8	17.5	18	18.8	20.3	20.4	18.5	20	18.98
2	2	17.6	20	18.5	19.2	17	19.7	17	18.6	21.5	19.5	18.86
3	2	15.3	19	19.5	19.5	19.2	20	16.4	24.2	19	22.5	19.46
4	2	20	19.8	22.5	19.5	22.6	22.2	20.5	19.1	18.2	20.9	20.53
5	2	22	21.4	17.6	20.1	23.5	24.3	20	16.6	20.5	21	20.70
6	2	15.6	13.7	20.6	18.7	18	18.6	14.6	12.7	19	14.7	16.62
7	2	18.5	18.2	21.5	17.5	11.6	20.6	21	16.5	19.4	18.4	18.32
8	2	17.5	16	22	18	11.5	19.8	16.8	17	18.5	17.8	17.49
9	2	22.6	19.3	19.1	20	19.9	20.9	19.8	20.1	17.9	15.9	19.55
10	2	18.5	19.4	18.4	22.1	16.8	18.9	21.6	17.2	13.9	14.6	18.14
1	3	10.5	8.4	14.6	16	16.1	17.8	19	17	18.1	17.8	15.53
2	3	15.3	17.1	22	18.3	18.4	19.4	18.1	22	13.6	22.8	18.70

3	3	21.2	14.2	17.2	17.9	19.9	18.2	12.4	20.8	17.5	18.6	17.79
4	3	25.5	17.2	19.2	16.6	11.6	12.5	11.6	17.6	16.1	17.6	16.55
5	3	16.1	11.4	19	20.5	19.4	21.6	20.6	19	16.6	18.6	18.28
6	3	15.4	16.5	15	12.3	19	15.1	14	15.5	16.1	15.9	15.48
7	3	20.2	15.6	9.8	10.3	15	19.8	21.2	17	14.2	15.6	15.87
8	3	19.6	15.2	17.4	17.5	15.1	20.4	18.9	20.3	19.6	16.3	18.03
9	3	20.2	14.6	18.4	23.6	22.1	18.1	19.2	20.6	16.1	14	18.69
10	3	19.5	22.1	16.9	18.6	19.9	19.5	20.4	18.1	16.7	17.4	18.91

Mes: Marzo

	Altura		PLANTAS									PROMEDIO
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	IKOMEDIO
1	1	21	21	22	15.5	16.5	25	27	23.5	21	22.5	21.50
2	1	26	34	28.5	25.5	25	27	31	34	33	29	29.30
3	1	18	23	33	42	28	33	26	27	33	26	28.90
4	1	23	28	26	27	26	33	29	32	30	25	27.90
5	1	20	23	21	21	26	30	30	22	23	24	24.00
6	1	17	17	23	16	23	28	15	15	21	19	19.40
7	1	22	23	29	25	16	25	21	25	23	15	22.40
8	1	26	24	26	29	27	27	31	34	26	28	27.80
9	1	22	25	28	31	29	30	31	23	28	25	27.20
10	1	21	16	16	18	21	25	10	24	17	16	18.40
1	2	19	17	20	22	29	33	23	33	20	21	23.70
2	2	26	25	25	27	21	27	18	22	32	20	24.30
3	2	18	27	28	26	25	27	23	26	30	22	25.20
4	2	25	26	24	32	33	29	30	29	29	30	28.70
5	2	28	25	23	21	27	25	27	30	28	18	25.20
6	2	15	19	23	25	22	23	14	12	19	18	19.00
7	2	27	23	22	29	17	10	24	19	15	19	20.50
8	2	20	20	30	22	16	22	20	21	28	21	22.00

9	2	23	24	25	25	27	15	25	30	20	21	23.50
10	2	20	22	17	18	20	21	22	21	22	22	20.50
1	3	12	10	19	17	20	30	23	19	20	20	19.00
2	3	20	23	21	26	27	26	24	27	15	25	23.40
3	3	20	15	18	28	22	30	16	20	25	23	21.70
4	3	15	17	25	21	13	20	14	17	22	19	18.30
5	3	15	16	24	20	29	28	25	28	25	20	23.00
6	3	14	15	13	22	20	18	19	15	15	17	16.80
7	3	21	16	8	10	18	32	23	21	22	17	18.80
8	3	24	17	28	30	24	32	21	20	22.5	17	23.55
9	3	19	21	25	25	25	26	23	23	25	23	23.50
10	3	22	22	23	23	23	21	23	20	22	19	21.80

Mes: Abril

	Altura	PLANTAS									PROMEDIO	
T.	REPETICION	1	2	3	4	5	6	7	8	9	10	ROMEDIO
1	1	24	23	24	20	23	32	41	25	23	27	26.20
2	1	35	41	30	35	44	32	40	40	38	33	36.80
3	1	33	21	30	40	46	38	41	44	33	38	36.40
4	1	21	42	45	35	42	38	34	38	36	30	36.10
5	1	23	21	32	26	30	32	35	34	30	20	28.30
6	1	19	10	30	21	31	33	21	20	19	22	22.60
7	1	32	30	30	19	36	21	31	32	16	24	27.10
8	1	30	30	40	38	36	38	33	40	30	30	34.50
9	1	25	33	31	38	42	40	44	32	30	24	33.90
10	1	21	33	10	30	26	27	22	20	21	21	23.10
1	2	22	20	33	33	32	35	24	27	21	20	26.70
2	2	26	36	31	20	25	20	10	23	35	22	24.80
3	2	20	31	40	38	38	44	20	30	36	39	33.60
4	2	28	35	36	34	36	30	34	30	36	33	33.20

5	2	29	21	29	26	28	30	33	34	31	26	28.70
6	2	11	24	34	31	28	22	15	12	23	22	22.20
7	2	26	25	30	29	13	31	38	17	32	31	27.20
8	2	23	28	36	34	16	36	30	34	38	22	29.70
9	2	31	26	29	38	34	28	34	32	30	26	30.80
10	2	25	30	20	28	30	30	38	33	28	25	28.70
1	3	14	11	20	17	36	31	29	19	21	18	21.60
2	3	23	24	32	29	30	33	29	25	30	24	27.90
3	3	21	23	34	32	40	32	27	20	24	25	27.80
4	3	19	20	28	30	20	29	18	35	26	21	24.60
5	3	21	19	25	24	30	30	21	35	26	21	25.20
6	3	16	24	16	12	29	27	24	19	11	21	19.90
7	3	23	19	15	14	24	35	33	33	21	11	22.80
8	3	24	24	34	34	32	35	31	26	25	24	28.90
9	3	20	33	40	31	34	33	37	30	33	24	31.50
10	3	28	25	28	30	31	27	30	22	26	18	26.50

Anexo 5. Resultados del peso parte aérea de las plántulas de cacao

P	eso parte aérea	PLANTAS								
T.	REPETICION	1	2	3	4	5	PROMEDIO			
1	1	0.98	0.8	0.46	0.38	0.35	0.594			
2	1	1.93	0.93	1.86	1.18	3.18	1.816			
3	1	0.3	0.13	0.81	0.14	0.44	0.364			
4	1	1	0.5	1.33	0.18	0.41	0.684			
5	1	0.14	0.1	0.53	2.52	1.16	0.89			
6	1	0.85	1.18	0.21	0.34	0.25	0.566			
7	1	0.1	0.42	0.25	0.12	0.54	0.286			
8	1	0.11	0.69	0.41	1.24	0.46	0.582			
9	1	1.01	0.11	1.86	1.19	0.39	0.912			
10	1	0.98	1.24	0.5	0.89	0.44	0.81			
1	2	0.95	1.06	0.81	0.19	0.95	0.792			
2	2	1.32	2.3	1.86	1.38	2.51	1.874			
3	2	0.96	1	1.1	0.61	0.93	0.92			
4	2	1.1	1.51	0.64	1.15	1.38	1.156			
5	2	0.1	0.86	1.21	1.42	1	0.918			
6	2	0.6	0.28	0.46	0.61	0.96	0.582			
7	2	0.81	2.15	1.21	0.61	1.06	1.168			
8	2	0.56	0.9	0.62	0.15	1.03	0.652			
9	2	1.12	0.86	0.5	1.1	1.02	0.92			
10	2	1.3	1.05	0.9	0.88	0.18	0.862			
1	3	1.2	0.03	1.34	0.98	0.85	0.88			
2	3	1.72	3.85	3.66	2.14	2.6	2.794			
3	3	0.9	1.81	1.86	1.01	0.65	1.246			
4	3	2.96	1.32	0.31	0.12	0.9	1.122			
5	3	1.05	0.1	1.54	1.32	0.86	0.974			
6	3	0.51	0.25	0.53	0.44	0.52	0.45			
7	3	1.38	1.06	0.1	1.2	1.21	0.99			

8	3	1.02	0.62	1.91	0.18	0.41	0.828
9	3	0.8	1.11	0.86	0.66	1.51	0.988
10	3	0.98	1.01	0.15	1.1	1.33	0.914

Anexo 6. Resultados del peso de raíz de las plántulas de cacao

PESO DE LA RAÍZ									
TRATAMIENTO	REPETICION	PESO PROMEDIO							
1	1	26.5							
2	1	28							
3	1	24.64							
4	1	32.4							
5	1	19.38							
6	1	15.63							
7	1	21.24							
8	1	21.83							
9	1	35.65							
10	1	21.19							
1	2	23.24							
2	2	28.66							
3	2	27.71							
4	2	25.34							
5	2	20.14							
6	2	14.09							
7	2	15.89							
8	2	22.8							
9	2	27.01							
10	2	28.03							
1	3	21.34							
2	3	36.45							
3	3	23.05							
4	3	18.14							
5	3	22.19							
6	3	13.21							

7	3	22.86
8	3	24.1
9	3	32.19
10	3	21.04

Anexo 7. Muestras de plántulas de cacao

