UNIVERSIDAD NACIONAL DE AGRICULTURA

ELABORACIÓN DE HARINA DE TRIGO FORTIFICADA CON CHÍA PARA LA PRODUCCIÓN DE ROLES DE CANELA

POR:

LIZZY ALEJANDRA DUARTE PACHECO

ANTEPROYECTO DE TESIS

CATACAMAS, OLANCHO

HONDURAS, C.A.

MAYO 2023

ELABORACIÓN DE HARINA DE TRIGO FORTIFICADA CON CHÍA PARA LA PRODUCCIÓN DE ROLES DE CANELA

POR:

LIZZY ALEJANDRA DUARTE PACHECO

JHUNIOR ABRAHAM MARCIA FUENTES

Asesor Principal

ANTEPROYECTO DE TESIS

PRESENTADO A LA UNIVERSIDAD NACIONAL DE AGRICULTURA COMO REQUISITO DE PRÁCTICA PROFESIONAL SUPERVISADO

CATACAMAS, OLANCHO

HONDURAS, C.A.

MAYO 2023

CONTENIDO

		Pág.
I.	INTRODUCCIÓN	1
II.	OBJETIVOS	2
2.	.1. Objetivo general	2
2.	.2. Objetivos específicos	2
III.	HIPÓTESIS	3
3.	.1. Pregunta problema	3
IV.	REVISIÓN LITERARIA	4
4.	.1. El trigo	4
4.	.2. Harina de trigo	4
4.	.3. Sustitución de harina de trigo en la panificación	6
4.	.4. La chía	7
	4.4.1. Chía: una fuente natural de ácido graso	8
	4.4.2. Composición química de la semilla de chía	9
	4.4.3. Usos de la harina de chía	10
	4.4.4. Harina de chía en la panificación	10
4.	5. Roles de canela	11
4.	.6. Análisis sensorial	12
	4.6.1. Pruebas afectivas	13
V. N	MATERIALES Y MÉTODOS	14
5.	.1. Lugar de investigación	14
5.	.2. Materiales y equipo	15
5	3 Metodología de investigación	16

5.3.1. Obtención de las materias primas	16
5.3.2. Elaboración de los roles de canela	17
5.4. Variables por evaluar	19
5.4.1. Determinación de la aceptación sensorial	19
5.4.2. Determinación de los costos de producción	20
5.5. Análisis de datos	21
VI. PRESUPUESTO	22
VII. CRONOGRAMA DE ACTIVIDADES	23
VIII. BIBLIOGRAFÍA	24

I. INTRODUCCIÓN

El desarrollo de tecnologías de transformación de granos que favorecen de manera considerable la elaboración de una gran cantidad de productos que aportan propiedades benéficas para la salud, ha generado un incremento importante en la elaboración de productos de harina de trigo sustituidas con harinas obtenidas de otros granos, ya que estos pueden aportar componentes como fibra, proteínas, aceites esenciales y componentes bioactivos derivados de la transformación propia de estos granos enteros (Vásquez *et al.* 2016).

La FAO define a las harinas compuestas como aquellas mezclas elaboradas para producir alimentos a base de trigo, como pan, pastas y galletas. Estas harinas pueden prepararse a base de otros cereales diferentes al trigo o de otras fuentes de origen vegetal, y pueden o no contener harina de trigo. Las condiciones generales de procesamiento y el producto final obtenido pueden ser comparable a los elaborados solo de trigo, pero también pueden presentar diferencias, entre ellas las características reológicas (Elías 1996).

El consumo de pan está incrementando y en la mayoría de los países la elaboración del pan y productos derivados de trigo ha generado la necesidad de importar este grano, dado que la producción interna no es suficiente, ya sea por condiciones climáticas y/o de suelo que no permiten el crecimiento del grano adecuadamente. La tendencia del mercado para introducir productos diferenciados y la amplia aceptación entre los consumidores, hace de la chía una materia prima que puede alcanzar un gran valor comercial (Vásquez *et al.* 2016).

Es por ello por lo que, este trabajo se enfoca en la elaboración de roles de canelas a partir de la sustitución parcial de harina de trigo por harina de chía, con el fin de obtener producto panificado de mayor valor nutritivo, con características sensoriales aceptables para los consumidores.

II. OBJETIVOS

2.1. Objetivo general

Elaborar roles de canela con características sensoriales aceptables para el consumidor, mediante la sustitución parcial de harina de trigo por harina de chía (*Salvia hispánica L.*)

2.2. Objetivos específicos

Determinar el porcentaje de sustitución parcial de harina de trigo por harina de chía que brinde las mejores características organolépticas a los roles de canela.

Obtención de harina de trigo fortificada con harina de Chía a escala de laboratorio.

Estimar los costos de producción de roles de canela elaborados a partir de la mezcla de harina de trigo y chía

III. HIPÓTESIS

3.1. Pregunta problema

¿Qué porcentaje de sustitución parcial de harina de trigo por harina de chía brinda las mejores características sensoriales a los roles de canela?

Ho. La elaboración de roles de canela a base de harina fortificada con Chía no tendrá una calidad general y sensorial aceptable por parte de los consumidores.

Ha. La elaboración de roles de canela a base de harina fortificada con Chía tendrá una calidad general y sensorial aceptable por parte de los consumidores.

IV. REVISIÓN LITERARIA

4.1. El trigo

El trigo es un cereal originario del oeste de Asia que se cultiva desde hace más de 6000 años. Actualmente constituye el cultivo más difundido en el mundo abarcando una superficie cosechada de 219 millones de ha por año, seguido por el maíz (177 millones ha), el arroz (162 millones ha) y la soja (108 millones de ha). Estos cuatro cultivos cubren el 50% de la superficie cosechada mundial.

Desde el punto de vista productivo, el trigo ocupa el cuarto lugar a nivel mundial luego de la caña de azúcar, el maíz y el arroz con cáscara. Si se computa solamente la producción que podría utilizarse como alimento humano, el trigo ocupa el segundo lugar luego del maíz. Sin embargo, como la mayor parte del maíz se utiliza como alimento forrajero, actualmente el trigo constituye el principal alimento humano seguido por el arroz, la papa, la soja y el maíz (Abbate *et al.* 2017).

4.2. Harina de trigo

La harina de trigo es el producto finamente triturado resultante de la molturación del grano de trigo (*Triticum aestivum*) industrialmente limpio o la mezcla de éste con el *Triticum durum*, en la proporción máxima del (80 % y 20 %), procedente principalmente del endospermo del grano. Los productos finamente triturados de otros cereales deberán llevar adicionado, al nombre genérico de la harina, el del grano del cual procedan. Por otro lado, si el producto resultante de la molturación del grano de trigo o de cualquier otro cereal responde a la del grano de cereal íntegro (es decir, en su composición están presentes las capas externas

del cereal, el endospermo y el germen) estaríamos hablando de harina integral (Vásquez *et al*. 2016).

En el caso de la harina de trigo, en función de las características fisicoquímicas de los trigos de partida y del proceso de molturación que se siga, el producto resultante puede presentar variaciones en su composición (la relación existente entre proteínas, tipo de proteínas, porcentaje de almidón y mayor o menor presencia de almidón dañado) que lo hacen más indicado para unos u otros usos industriales: panificación tradicional, panificación industrial, bollería, galletas

La harina de trigo contiene principalmente hidratos de carbono complejos. Su contenido en proteínas, lípidos, vitaminas (tiamina, riboflavina y niacina) y minerales es relativamente importante. De estos últimos destaca el fósforo. Entre las proteínas, la más representativa es el gluten, que confiere a la harina la característica típica de elasticidad durante la panificación, para llegar a obtener un producto final poroso y esponjoso. Las proteínas no tienen un gran valor biológico son deficientes en lisina y en treonina; sin embargo, actualmente las harinas se suelen enriquecer con estos aminoácidos y algunas vitaminas y minerales (Coral y Gallegos 2015).

El contenido en proteínas varía según el tipo de trigo, época de cosecha y grado de extracción (proporción de grano completo que se emplea para obtener una cantidad determinada de harina). La harina integral, al tener un alto grado de extracción, por conservar la cubierta, el germen y la capa de aleurona, al no haber sido sometido el grano a un proceso de refinado, aporta mayor cantidad de proteínas, grasas (aceite en el germen), minerales, vitaminas del grupo B (particularmente de ácido fólico).

Pero sobre todo de fibra. Por otro lado, un componente que destaca en el trigo es el ácido fítico, el cual se encuentra en la capa de aleurona; así, la harina integral que contiene salvado y aleurona podrá dificultar la absorción de determinados minerales, como hierro y calcio,

presentes en la harina misma o en otros alimentos (Anchundia Romero y Martillo Ortegano 2019).

Tabla 1. Composición nutricional de la harina de trigo por 100g de porción comestible

Elemento	Cantidad		
Energía (kcal)	375.0		
Proteínas (g)	9.3		
Lípidos totales (g)	1.2		
Carbohidratos (g)	80.0		
Fibra (g)	3.4		
Agua (g)	6.1		
Calcio (mg)	15.0		
Hierro(mg)	1.1		
Yodo (µg)	1.0		
Magnesio(mg)	28.0		
Zinc (mg)	0.8		
Sodio (mg)	3.0		
Potasio (mg)	130.0		
Fosforo (mg)	120.0		
Selenio (µg)	4.0		

Fuente Moreiras (2019).

4.3. Sustitución de harina de trigo en la panificación

En muchos países, el consumo de pan está incrementando continuamente y en la mayoría de estos la elaboración del pan y productos derivados de trigo ha generado la necesidad de importar este grano, dado que la producción interna no es suficiente, ya sea por condiciones climáticas y/o de suelo que no permiten el crecimiento del grano adecuadamente o representa dificultades para su desarrollo. Por esta razón es que surge la necesidad de reemplazar el trigo Con otras harinas obtenidas en las propias regiones (Seibel 2006). Sin embargo, además de

lo anterior y los altos costos del trigo regido por mercados internacionales son puntos para considerar cuando utilizamos este cereal en la producción de pan y sus derivados, lo que nos hace buscar alternativas en la utilización de otros cereales para elaborar productos más accesibles o de menor costo a la población.

Dentro de estas harinas vegetales empleadas en la sustitución de harina de trigo con la finalidad de mejorar las características nutricionales, organolépticas e incluso bajar los costos de producción se encuentran principalmente las harinas de granos de sorgo, mijo, avena, centeno, triticale, arroz, amaranto, tapioca, cebada, gluten de maíz, harinas de germen de maíz desgrasado y harinas de maíz germinado, entre otras (Chavan *et al.* 1993).

Pero la sustitución de la harina de trigo por otras puede generar cambios importantes a considerar. Se ha observado que la sustitución de harina de trigo disminuye la elasticidad de la masa. Es por ello por lo que sustituciones de 10 a 20% de harina de trigo han demostrado producir pan de calidad aceptable sin un impacto importante en el color, estructura de la miga, textura y vida de anaquel (Seibel 2006, Mepba *et al.* 2007).

Estudios realizados por Falade y Akingbala (2008), al elaborar pan con harinas compuestas de 10% de casava y 90% de trigo observaron un comportamiento muy favorable con respecto al pan elaborado solamente de harina de trigo. Aunque el gluten, componente muy importante en panificación, sufre una dilución por sustitución, muchas de las harinas alternativas tienen propiedades que complementan al gluten (Ohimain 2015).

4.4. La chía

Salvia hispanica L. (Lamiaceae), conocida tradicionalmente como "chía", es una especie de interés dietario-medicinal, ya que además de ser una buena fuente de ácidos grasos omega-6 y omega-3, proteínas y antioxidantes, es rica en fibras solubles e insolubles. Se consumen las semillas enteras, la harina parcialmente desgrasada y la fibra (Cahill 2003).

La chía es una planta herbácea, crece de uno a un metro y medio de altura, posee tallos cuadrangulares, acanalados, vellosos, hojas opuestas, pecioladas, aserradas y flores reunidas en espigas auxiliares o terminales. Cada fruto lleva 24 semillas muy pequeñas en forma oval, lisas, brillantes, de color grisáceo con manchas rojizas. En la mayor parte de las variedades las flores son azules, pero en la llamada chía blanca, las flores, así como las semillas son blancas. Se cultiva para la producción de semilla de la que se obtienen hasta 3000 kg por hectárea. Se emplea para preparar bebidas refrescantes. Contiene fécula mucílago y aceite, éste en una proporción del 30 al 35 % (Xingu Lopez *et al.* 2017).

Habitualmente se denomina semilla al fruto de chía, el que se clasifica dentro de los frutos secos indehiscentes. Su tamaño es de 1 mm a 1,2 mm de ancho y 2 mm a 2,2 mm de largo aproximadamente; tiene una forma oval y la capacidad de desarrollar un mucílago cuando se hidrata. Posee además una superficie lisa y brillante. Se caracteriza por presentar mezcla de colores y tonalidades diferentes (Rovati *et al.* 2006).

4.4.1. Chía: una fuente natural de ácido graso

La chía es un alimento completo y funcional por la gran cantidad de antioxidantes (ácido clorogénico, ácido caféico, miricetina, quercetina y kaempferol flavonoles), niveles seguros de metales pesados, y por ser libre de micotoxinas, además de no contener gluten (Mohd Ali *et al.* 2012). La inigualable estabilidad de los ácidos alfa-linolénico (ALA).

El ácido eicosapentaenoico (EPA) y el ácido docosahexaenoico (DHA), de la chía, es el resultado de los antioxidantes naturales que contiene; lo que evita el envejecimiento prematuro y las enfermedades degenerativas como el cáncer, enfermedades cardiovasculares, cataratas, declinación del sistema inmunológico y disfunción cerebral (Migliavacca *et al.* 2014).

Otra característica importante es que la chía no contiene porcentajes de colesterol. En esto difiere de otros alimentos que contienen cantidades muy significativas. Para los

consumidores conscientes de la salud, esto confiere ventajas muy grandes en el comercio de productos a base de chía.

4.4.2. Composición química de la semilla de chía

Las semillas de chía es oleaginosa, distinta a las demás oleaginosas por su contenido graso, dos tercios del aceite de chía son ácidos grasos esenciales Omega-3 (Poli Insaturados), y solo el 10 % son ácidos grasos saturados, durante tiempo se ha investigado y se presenta como un potencial ingrediente novedoso y funcional debido a sus excelentes propiedades nutricionales y bioactivas (Villalobos Pineda 2020), además, de su excelente contenido en Omega-3, la chía tiene también otros componentes muy interesantes para la nutrición humana como antioxidantes, fibra, proteínas, vitaminas B1, B2, B3, y minerales tales como fósforo, calcio, potasio, magnesio, hierro, zinc y cobre.

La chía contiene aproximadamente un 20% de proteína, nivel que resulta más alto que el que contiene algunos cereales tradicionales como el trigo (13,7%), el maíz (9,4%), el arroz (6,5%), la avena (16,9%) y la cebada (12,5%) (Ullah *et al.* 2016). Las semillas de chía además de tener un alto contenido de proteínas se han hecho interesantes comparada con otras semillas como el trigo, la avena, la cebada y el centeno por no tener gluten.

Tabla 2. Composición nutricional de la harina de chía

Componente	Cantidad
Humedad	7.86±0.22
Cenizas	3.63±0.01
Lípidos totales	21.69±0.21
Proteína cruda	21.52±0.19
Carbohidratos	45.30±0.36

Fuente. Sargi et al. (2013).

4.4.3. Usos de la harina de chía

Según menciona Sandoval Oliveros (2012) la harina de la semilla de chía se ha caracterizado por ser una buena fuente ácidos grasos, fibra dietética total, proteína y antioxidantes, además de ser una harina libre de gluten es por ello, la importancia que tiene en la aplicación para obtener alimentos como: pastas, productos de panificación (panes, galletas, grisines), premezclas de harina para panificación, barras de cereales, entre otros.

En un estudio que realizaron aseguran que para los aztecas y mayas representó un grano importante, usado: en alimentación, preparación de pinturas, elaboración de medicinas y en uso ceremonial mediante ofrendas. Por otra parte, los numerosos usos culinarios, medicinales, artísticos y religiosos convirtieron al grano y su harina en las materias primas más usadas de la época de la conquista española, formando parte de los cuatro granos más importantes que conformaron la base de la dieta alimentaria (Cahill 2004).

4.4.4. Harina de chía en la panificación

En un estudio realizado por Coelho y Salas Mellado (2013), fueron evaluados tecnológicamente panes con adición de 2 y 20% de harina de chía, testeando el uso de harina de chía hidratada y no hidratada en el procesamiento. Encontraron que las concentraciones más bajas de harina de chía no afectaran las características tecnológicas del pan en comparación con el control. La concentración más alta de harina de chía afectó directamente el volumen específico y la dureza de los panes. Además, los panes preparados con harina de chía hidratada obtuvieron mejores resultados.

Espinosa Rodríguez (2021) estudió la sustitución de harina de trigo por harina de semillas de chía en la elaboración de productos horneados como tortas y galletas; y al analizar valores de dureza en la masa de las galletas, dureza y fracturabilidad en las galletas horneadas, adhesividad, cohesividad, dureza y compresibilidad en la masa de tortas y dureza, firmeza y elasticidad en las tortas horneadas, los resultados demuestran que la harina de trigo no se

puede sustituir fácilmente por harina de chía ya que esta aumenta considerablemente la dureza de las galletas y disminuye la esponjosidad de las tortas. Además, partiendo de un análisis sensorial, concluyó que también genera una sensación poco agradable al consumir los productos.

De la misma forma Cordova Yucra (2017), determinó el porcentaje óptimo de sustitución de harina de trigo por harina de chía (*Salvia hispánica* L.) en función a las características sensoriales, físicas y químicas del pan de molde. Concluyó que la concentración óptima de harina de chía es de 11.96 %; y producen un pan de molde con: proteínas 12.25 %; lípidos 6.38%; carbohidratos 43.03 %; humedad 34.98 %; cenizas 1.76 %; fibra cruda 1.62 % con 278.58 kcal, con un valor de 2,021 kg/cm2 de presión en textura.

Asimismo Navarro Martínez y Pereira Jalilie (2020) desarrollaron varias formulaciones para reemplazar la harina de trigo por harina de chía y quinoa en un pan de molde; las cuales están comprobadas como libres de gluten; así mismo, se buscaron evaluar sus propiedades fisicoquímicas, microbiológicas y sensoriales.

Para determinar la formulación que cumpliera con los criterios de aceptabilidad; por lo que determinaron que la formulación que contenía 28% harina de Chía y 72% harina de Quinoa, obtuvo mayor aceptación en la población encuestada. Por otra parte, frente a los parámetros fisicoquímicos y microbiológicos no presentó una diferencia significativa en comparación con las otras formulaciones.

4.5. Roles de canela

El rollo de canela (también llamado pan de canela, espiral de canela o rol de canela) es un rollo (un tipo de pan dulce) creado en la década de 1920 en Suecia y Dinamarca. Si bien el rollo de canela era conocido desde la segunda mitad del siglo XIX, solo era horneado en hogares con suficientes recursos económicos, por el coste de sus ingredientes (Almonacid y Dangé 2009).

En la actualidad, es una especialidad repostera típica de los Estados Unidos y del norte de Europa. En Suecia se lo conoce con el nombre de "kanelbulle". Es un panecillo muy popular para acompañar el café. Desde 1999, se celebra el Día del Rollo de Canela, cada 4 de octubre. Consiste en un rollo de masa abriochada con canela y mezcla de azúcar (y pasas en algunos casos), rociado sobre una delgada capa de mantequilla. La masa es enrollada, cortada en porciones individuales y horneada. A los rollos de canela se les glasea con azúcar o una crema de queso (Almonacid y Dangé 2009).

Tabla 3. Composición nutricional de los roles de canela por 100g de porción comestible

Elemento	Cantidad
Energía (Kcal)	452.0
Proteínas (g)	4.45
Lípidos totales (g)	26.6
Carbohidratos (g)	48.6
Fibra (g)	1.20
Agua (g)	19.0
Calcio (mg)	183.0
Hierro(mg)	1.37
Magnesio(mg)	14.0
Zinc (mg)	0.53
Sodio (mg)	305.0
Potasio (mg)	102.0
Fosforo (mg)	131.0
Selenio (µg)	13.0

Fuente. Departamento de Agricultura de los Estados Unidos (2019).

4.6. Análisis sensorial

De acuerdo con Torricela Morales *et al.* (2007) la evaluación sensorial es una disciplina de la química analítica de los alimentos y se ocupa de los métodos y procedimientos de medición

En los cuales los sentidos humanos constituyen el instrumento. El análisis sensorial es una herramienta imprescindible para obtener información sobre algunos aspectos de la calidad de los alimentos, a los que no se puede tener acceso con otras técnicas analíticas.

Como se conoce, uno de los objetivos de esta disciplina es interpretar las respuestas de los consumidores apreciadas principalmente por los sentidos, cuando valoran la calidad o la aceptabilidad de los productos. Los resultados permiten determinar cómo el procesamiento y la formulación de un producto afectan la aceptabilidad de un alimento. Por tanto, el uso de esta herramienta es valioso, ya que no debe minimizarse la calidad desde el punto de vista del consumidor, es decir, aquella que éste quiere y necesita (Rodríguez *et al.* 2015).

4.6.1. Pruebas afectivas

Según Cárdenas-Mazón *et al.* (2018) el objetivo de las pruebas afectivas es conocer el gusto, la aceptación o reacción de los consumidores ante un determinado producto o productos. Lo más importante en estas pruebas es la selección de un grupo de degustadores representativos de los consumidores. Por lo general, se requieren grupos grandes de individuos (más de 200), ya que, la participación de una población no representativa puede provocar un sesgo tal que desvirtúe los resultados e impida su utilización, ni aún como orientación preliminar.

Las pruebas afectivas de escala hedónica es la más popular, generalmente se utilizan las estructuradas, de 7 puntos, que van desde "me gusta muchísimo", hasta "me disgusta muchísimo" (Torricella Morales *et al.* 2007).

V. MATERIALES Y MÉTODOS

5.1. Lugar de investigación

El estudio se llevará a cabo en la planta de vegetales perteneciente a la Facultad de Tecnología Alimentaria de la Universidad Nacional de Agricultura. Este campus se ubica en el departamento de Olancho en la carretera hacia Dulce Nombre de Culmí, kilómetro 215, Barrió El Espino ciudad de Catacamas, Honduras. La extensión de Catacamas es de 7,228.5 km², la ciudad de Catacamas está situada entre los (14°; 54', 04"), latitud Norte y (85°; 55', 31"), del Meridiano de Greenwich.

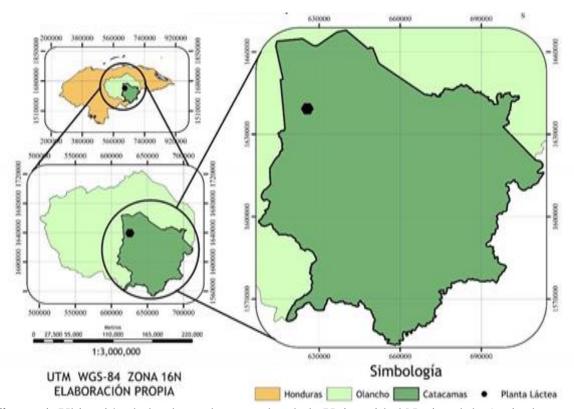


Figura 1. Ubicación de la planta de vegetales de la Universidad Nacional de Agricultura

5.2. Materiales y equipo

En la tabla cuatro se pueden observar los materiales, equipos y materia prima necesarios que se necesitaran en el trabajo de investigación.

Tabla 4. Materiales y equipo necesarios para el desarrollo de la investigación

Materia prima	Descripción	
Harina de trigo	Harina Gold Star® de Trigo	
Harina de chía	Elaborada con semilla de Salvia hispánica L.	
Azúcar	Azúcar Morena Doña Matilde®	
Margarina	Margarina Pickford's Premiun®	
Huevos	Huevos de Gallina Suli®	
Levadura	Levadura Fermipan®	
Canela	Canela molida Don Julio®	
Sal	Sal Yodada Fina Cris-Sal®	
Leche	Leche entera Sula®	
Equipos y materiales	Descripción	
Molino	Tipo dentado de 3 kg de fuerza	
Tamices	De malla, tipo comercial	
Balanza Analítica	XB220A, con capacidad para 1 kg y 5 kg	
Ollas industriales	Pórtico, con capacidad para 10 litros	
Horno	Deshidratador de alimentos con sistema de flujo convectivo de la marca VinRC modelo LT-27	
Cuchillo y cucharas	Acero inoxidable	
Recipientes	Industriality, con capacidad de 1 kg y 5 kg	
Guantes, Mascarilla y redecilla	Tela, desechable	
Mesas	Pórtico	

Fuente: Elaboración propia

5.3. Metodología de investigación

El método que se empleará en la investigación es el diseño de bloque al azar a escala de laboratorio. La metodología se llevará a cabo en tres fases experimentales: en la primera fase, se obtendrán las distintas materias primas necesarias para la elaboración de roles de canela; en la segunda fase se desarrollarán cinco formulaciones de roles de canela, teniendo un patrón con 100% harina de trigo y otros tres con una sustitución parcial de harina de trigo por 5%, 10%, 15% y 20% de harina de chía.

Lo anteriormente mencionado se basará en estudios preliminares de la misma índole, y recomendaciones realizadas por Coelho y Salas Mellado (2013). En la última fase, se seleccionará la formulación idónea, a través de pruebas sensoriales de tipo afectiva, en la que participaran 75 jueces. Asimismo, se estimarán los costos por unidad de producción de la formulación optimizada.

5.3.1. Obtención de las materias primas

Para la obtención de la harina de chía, se seguirá la metodología recomendada por Quiroga y colaboradores (2014), el cual recomienda realizar una limpieza para eliminar las impurezas presentes en las semillas, posteriormente someter a deshidratación la chía con una temperatura inferior a 40°C para no perder nutrientes. Ellos sometieron la chía en dos tiempos y dos diferentes temperaturas, la primera temperatura a la que la que fue sometida la chía es de 32°C durante 7 horas, sometiéndola por segunda vez a una temperatura de 38° C durante 6 horas. Seguidamente se seguirá la metodología recomendada por el manual de guías y prácticas del Instituto de Investigaciones Agropecuarias (2016), donde se muele la semilla de chía a 3600 rpm por un tiempo de 30 segundos. Por último, se tamizan hasta alcanzar un tamaño de partícula de 500 μm (0.5 mm).

Y se almacenan en bolsas herméticas a temperatura ambiente. Con respecto a la harina de trigo, y demás materiales para la elaboración de los roles de canela, estos se obtendrán de sitios comerciales cercanos a la Universidad de Agricultura.

5.3.2. Elaboración de los roles de canela

Con el fin de determinar el tiempo de mezclado, fermentado y horneado se realizarán pruebas preliminares siguiendo el flujo de procesos e ingredientes para elaborar los rollos de canela. Para la elaboración de los roles de canela se seguirán los procedimientos utilizados por Almonacid y Dangé (2009) los cuales consisten en:

- 1. Pesar los ingredientes necesarios para la elaboración de roles de canela.
- 2. Mezclar y amasar durante 20 minutos la harina de trigo, margarina, leche, huevos, azúcar morena, levadura y sal, hasta obtener una masa suave y homogénea.
- 3. Reposar la masa durante 10 minutos para que se fermente.
- 4. Amasar nuevamente la masa y estirarla con ayuda de un rodillo hasta obtener un grosor de aproximadamente cinco milímetros.
- 5. Rellenar la masa con canela, y enrollarla.
- 6. Cortar los rollos aproximadamente a una pulgada de grosor, y dejar reposar durante 10 minutos.
- 7. Hornear los roles de canela a 180 °C durante 30-40 minutos.

En la figura 2 se muestran los procedimientos que se utilizaran para la elaboración de roles de canela.

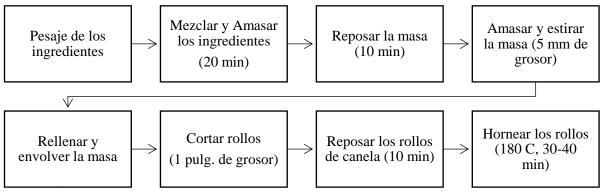


Figura 2. Diagrama de flujo de procesos para la elaboración de roles de canela

Para la elaboración de roles de canela, se hará la sustitución parcial del harina de trigo por un 5, 10 y 15% de harina de chía, esto tomando en cuenta los valores máximos de sustitución reportados por Cordova Yucra (2017) el cual menciona que el porcentaje óptimo de sustitución del harina de trigo por harina de chía es de un 12%. De tal manera que se obtendrán cuatro tratamientos: T0: Testigo, T1: Roles de canela con 5% de harina de chía, T2: Roles de canela con 10% de harina de chía, y T3: Roles de canela con 15% de harina de chía (Tabla 5).

Tabla 5. Porcentajes de sustitución parcial de harina de trigo por harina chía

Tratamiento	Harina de trigo	Harina de chía
0	100%	0.0%
1	95.0%	5.0%
2	90.0%	10.0%
3	85.0%	15.0%

Elaboración propia.

Tabla 6. Cantidad de los ingredientes necesarios para la elaboración de roles de canela en base a 1kg de harina de trigo.

Ingrediente	Formulación				
	0	1	2	3	
Harina de trigo	1000 g	950 g	900 g	850 g	
Harina de chía	0 g	50 g	100 g	150 g	
Levadura	40 g	40 g	40 g	40 g	
Leche	250 ml	250 ml	250 ml	250 ml	
Azúcar morena	150 g	150 g	150 g	150 g	
Margarina	250 g	250 g	250 g	250 g	
Huevos	4 u	4 u	4 u	4 u	
Canela	50 g	50 g	50 g	50 g	
Sal	10 g	10 g	10 g	10 g	

Elaboración propia.

5.4. Variables por evaluar

5.4.1. Determinación de la aceptación sensorial

Las distintas formulaciones de los roles de canela serán sometidas a una evaluación sensorial a escala piloto, tomando como variables de respuesta las características organolépticas como ser la textura, aroma, color, sabor y aceptabilidad general; a partir de pruebas hedónicas de nueve puntos con 75 jueces consumidores del producto, con edades entre los 18 y 50 años.

Tabla 7. Escala hedónica de nueve puntos

Me gusta muchísimo	9 puntos
Me gusta mucho	8 puntos
Me gusta bastante	7 puntos
Me gusta ligeramente	6 puntos
Ni me gusta, ni me disgusta	5 puntos
Me disgusta ligeramente	4 puntos
Me disgusta bastante	3 puntos
Me disgusta mucho	2 puntos
Me disgusta muchísimo	1 puntos

5.4.2. Determinación de los costos de producción

Los costos de producción de los roles de canela seleccionado se estimarán realizando la sumatoria de los costos de materia prima (costos directos, los costos indirectos y los gastos generales). El costo de producción total, incluyen de manera general, el costo de operación y gastos generales. A continuación, se muestra las ecuaciones empleadas:

Costo total de producción = Costo de operación + Gastos generales **Costo de operación** = Costos directos + Costos indirectos

Costos directos: es la sumatoria del costo de todos los ingredientes para elaborar en base a un kilogramo de harina de trigo. Los costos indirectos y los gastos generales provienen del costo energético de los equipos y todos los demás costos involucrados en la elaboración del producto. Es importante aclarar que estos costos son para corridas experimentales y que estos equipos consumen lo mismo en tiempos iguales para cantidades pequeñas como para cantidades industriales, y la información de las fichas de consumo se tomará de acuerdo con un consumo energético promedio reportado para condiciones industriales de trabajo.

5.5. Análisis de datos

Los resultados serán procesados haciendo uso de los programas Microsoft Excel versión 2020 para la tabulación de los datos y SPSS versión 26.0 (IBM-SPSS, 2020) para realizar pruebas de comparación y análisis de medias y varianzas a los resultados de las evaluaciones sensoriales. Se ejecutarán pruebas estadísticas descriptivas exploratorias para determinar si la información tiene una distribución normal mediante la prueba de Kolmogorov Smirnov. Además, se utilizará el ANOVA de un factor y la prueba de comparación de media Tukey-b, para determinar si hay diferencia significativa entre las evaluaciones de aceptación sensorial de los roles de canela.

VI. PRESUPUESTO

Descripción	Costo total (L)
Harina de trigo (10Libras)	120
Semillas de Chía (10Libras)	1,500
Leche (10litros)	180
Azúcar Morena (10Libras)	150
Huevos (30Unidad)	180
Margarina (15Barra)	90
Canela (10libra)	200
Levadura(15Onzas)	45
Sal (1bolsa)	14
Otros	2,000
Total	4,479

Elaboración propia,

VII. CRONOGRAMA DE ACTIVIDADES

Actividad	Meses			
	Mayo	Junio	Julio	Agosto
Anteproyecto de tesis				
Pruebas preliminares				
Desarrollo de las formulaciones				
Análisis sensorial				
Tabulación de datos				
Discusión de resultados				
Elaboración del informe final				
Defensa de investigación				
Redacción de articulo académico				

Elaboración propia.

VIII. BIBLIOGRAFÍA

- Abbate, P; Cardós, M; Campaña, L. 2017. El trigo, su difusión, importancia como alimento y consumo. Manual del cultivo del trigo. Instituto Internacional de Nutrición de Plantas 1(1):7-21.
- Almonacid, J; Dangé, D. 2009. Cinnamon Roll: un dulce snack para la temporada. Santiago Marriott Hotel Pastelería 1(1):39-43.
- Anchundia Romero, CA; Martillo Ortegano, AN. 2019. Estudio comparativo del valor nutricional de la harina de fruta de pan (*Artocarpus altilis*) frente a la harina de trigo (*Triticum vulgare*). Tesis Doctoral. Facultad de Ciencias Químicas, Universidad de Guayaquil, Ecuador. 90 p.
- Cahill, JP. 2003. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Economic Botany 57(4):604-618. DOI: https://doi.org/10.1663/0013-0001(2003)057[0604:EOCSHL]2.0.CO;2.
- Cahill, JP. 2004. Genetic diversity among varieties of chía (*Salvia hispanica* L.). Genetic Res. Crop Ev. 51(7):773-781. Disponible en https://link.springer.com/article/10.1023/B:GRES.0000034583.20407.80.
- Cárdenas-Mazón, NV; Cevallos-Hermida, CE; Salazar-Yacelga, JC; Romero-Machado, ER; Gallegos-Murillo, PL; Cáceres-Mena, ME. 2018. Uso de pruebas afectivas, discriminatorias y descriptivas de evaluación sensorial en el campo gastronómico. Domino de las Ciencias 4(3):253-263. DOI: https://doi.org/10.23857/dc.v4i3.807.
- Chavan, JK; Kadam, SS; Ramka Reddy, N. 1993. Nutritional enrichment of bakery products by supplementation with nonwheat flours. Critical Reviews in Food Science Nutrition 33(3):189-226.
- Coelho, MS; Salas Mellado, MM. 2013. Pan formulado con adición de harina de chía (*Salvia hispanica* L). La Alimentación Latinoamericana Nº 308. Universidad Federal do Rio Grande, Brasil. 38-42 p.

- Coral, V; Gallegos, R. 2015. Determinación proximal de los principales componentes nutricionales de harina de maíz, harina de trigo integral, avena, yuca, zanahoria amarilla, zanahoria blanca y chocho. infoANALITICA 3:9-24.
- Cordova Yucra, JL. 2017. Determinación del porcentaje de sustitución de la harina de trigo (*Triticum spp*) por harina de Chía (*Salvia hispanica* L.) en función a las características sensoriales, física y química del pan de molde. Tesis de grado. Tacna, Perú. 111 p.
- Departamento de Agricultura de los Estados Unidos. 2019. Cinnamon buns, frosted (includes honey buns) (sr legacy, 167940). Central de datos de alimentos. Consultado el 19 de abril de 2023. Disponible en: https://fdc.nal.usda.gov/fdc-app.html#/fooddetails/167940/nutrients. .
- Elías, LG. 1996. Concepto y tecnologías para la elaboración y uso de harinas compuestas. Boletín de la Oficina Sanitaria Panamericana 121(2):179-182.
- Espinosa Rodríguez, ED. 2021. Estudio de la sustitución de harina de trigo por harina de semillas de chía en la elaboración de productos horneados como tortas y galletas. Tesis de grado. Universidad de los Andes, Bogotá. 10 p.
- Falade, KO; Akingbala, JO. 2008. Improved nutrition and national development through the utilization of cassava in baked foods. International Union of Food Science and Technology.
- Mepba, H; Eboh, L; Nwaojigwa, SU. 2007. Chemical composition, functional and baking properties of wheat-plantain composite flours. African Journal of Food, Agriculture, Nutrition and Development 7(1):152-160.
- Migliavacca, RA; Silva, TD; Vasconcelos, AD; Mourão Filho, W; Baptistella, JLC. 2014. O cultivo da chia no Brasil: futuro e perspectivas. Journal of Agronomic sciences, 3(1):161-179.
- Mohd Ali, N; Yeap, SK; Ho, WY; Beh, BK; Tan, SW; Tan, SG. 2012. The promising future of chia, *Salvia hispanica* L. Journal of Biomedicine & Biotechnology 2012:171956. DOI: https://doi.org/10.1155/2012/171956.
- Moreiras, O. 2019. Tablas de composición de alimentos. Text (en línea, sitio web).

 Consultado 31 may 2023. Disponible en https://biblioteca.uazuay.edu.ec/buscar/item/83081.

- Navarro Martínez, J; Pereira Jalilie, S. 2020. Elaboración y caracterización de pan de molde a base de harina de chía (Salvia hispánica l.) y quinua (*Chenopodium quinoa* wild). Revista Gipama 2(1):44-53.
- Ohimain, EI. 2015. Recent advances in the production of partially substituted wheat and wheatless bread. European Food Research and Technology 240(2):257-271. DOI: https://doi.org/10.1007/s00217-014-2362-1.
- Rodríguez, DC; Generoso, SM; Gutiérrez, DR; Questa, AG. 2015. Aplicación del análisis sensorial en la evaluación de la calidad de productos frescos cortados. Simiente 85(3-4):21-38.
- Rovati, A; Escobar, E; Prado, C. 2006. Particularidades de la semilla de chía (Salvia hispanica L.). EEAOC Avance Agroindustrial 33(3):39-43.
- Sandoval Oliveros, MR. 2012. Aislamiento y caracterización de las proteínas de reserva de chía (Salvia hispánica L.). Tesis de Máster. México, Universidad Autónoma de Queretaro. 113 p.
- Sargi, SC; Silva, BC; Santos, HMC; Montanher, PF; Boeing, JS; Santos Júnior, OO; Souza, NE; Visentainer, JV. 2013. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Science and Technology 33:541-548. DOI: https://doi.org/10.1590/S0101-20612013005000057.
- Seibel, W. 2006. Composite flours. In Future of Flour: A Compendium of Flour Improvement. Popper. Verlag AgriMedia. 193-198 p.
- Torricella Morales, RG; Zamora Utset, E; Pulido Álvarez, H. 2007. Evaluación sensorial: Aplicada a la investigación, desarrollo y control de la calidad en la industria alimentaria. Habana, Cuba, Universitaria. 135 p.
- Ullah, R; Nadeem, M; Khalique, A; Imran, M; Mehmood, S; Javid, A; Hussain, J. 2016. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology 53(4):1750-1758. DOI: https://doi.org/10.1007/s13197-015-1967-0.
- Vásquez, F; Verdú, S; Islas, AR; Barat, JM; Grau, R. 2016. Efecto de la sustitución de harina de trigo con harina de quinoa (*Chenopodium quinoa*) sobre las propiedades reológicas de la masa y texturales del pan. Revista Iberoamericana de Tecnología Postcosecha 17(2):307-317.

- Villalobos Pineda, KK. 2020. Impacto del procesado sobre la digestibilidad in vitro de semillas de chía (Salvia hispánica) y sus derivados. Tesis de Máster. Universidad Politécnica de Valencia, España. 23 p.
- Xingu López, A; González Huerta, A; de la Cruz Torres, E; Sangerman Jarquín, DM; Orozco de Rosas, G; Rubí Arriaga, M. 2017. Chía (*Salvia hispanica* L.) situación actual y tendencias futuras. Revista Mexicana de Ciencias Agrícolas 8(7):1619-1631.