UNIVERSIDAD NACIONAL DE AGRICULTURA

EVALUACIÓN DE RENDIMIENTOS EN CULTIVARES DE CEBOLLA ROJA Y AMARILLA EN DÍAS CON FOTOPERÍODOS INTERMEDIOS BAJO CONDICIONES DEL VALLE DE COMAYAGUA.

POR:

RANDAL RAUL MENDOZA ACOSTA

TESIS

PRESENTADA A LA UNVERSIDAD NACIONAL DE AGRICULTURA COMO REQUISITO PREVIO A LA OBTENCIÓN DEL TÍTULO DE

INGENIERO AGRÓNOMO

CATACAMAS OLANCHO

HONDURAS C.A

DICIEMBRE, 2013

EVALUACIÓN DE RENDIMIENTOS EN CULTIVARES DE CEBOLLA ROJA Y AMARILLA EN DÍAS CON FOTOPERÍODOS INTERMEDIOS BAJO CONDICIONES DEL VALLE DE COMAYAGUA

POR:

RANDAL RAUL MENDOZA ACOSTA

M.Sc. NORMAN LEONEL MERCADAL

ASESOR PRINCIPAL

TESIS PRESENTADA A LA UNIVESIDAD NACIONAL DE AGRICULTURA PREVIO A LA OBTENCIÓN DEL PRACTÍCA TITULO DE INGENIERO AGRONOMO

CATACAMAS, OLANCHO

HONDURAS, C.A

DICIEMBRE, 2013

DEDICATORIA

Primeramente a Dios todo poderoso quien ha guiado mi camino desde el principio de mi vida, cuidarme y protegerme en todo aspecto.

A mis padres REBECA ACOSTA ACOSTA y ANGEL RENE MENDOZA por todo su apoyo y amor que me han brindado y convertirme en la persona que ahora soy.

A mi hermanos REBECA MARIA MENDOZA ACOSTA Y ESDRAS ARIEL MENDOZA AMADOR estar con migo siempre.

A mis familiares que depositaron su confianza en mí y por todas sus oraciones.

AGRADECIMIENTOS

A Dios por nunca olvidarse de mí y tenerme con salud y bienestar, darme la serenidad y el

entendimiento.

A KATHERINE PAOLA UCLES CABRERA por estar en todos los momentos de alegría y

tristeza, por el apoyo moral que me ha brindado y por todo su amor.

A mis asesores por su interés en el buen desarrollo de este trabajo.

M. Sc. NORMAN LEONEL MERCADAL

ING. JORGE ZAMIR ERAZO

ING. RAMON HEBERTO AVILA VELÁZQUEZ

A mis amigos de la CLASE KAYROS '2013' por los momentos gratos que pasamos.

A la FUNDACION HONDUREÑA DE INVESTIGACION AGRICOLA por su apoyo en

la realización de este trabajo y por brindarme la oportunidad de aprender un poco más.

A los miembros del cuarto 10 H5 por los momentos inolvidables que pasamos, por estar en

las buenas y en las malas gracias muchachos lo logramos juntos: Amado Santos Ardon,

Allan Joel Estrada Andino, Franklin Omar Meza Enamorado, Jose Hernán Rubí Rivera,

Hector Adolfo Moya Zavala, Oslan Michael Molina Zelaya, Kervin Omar Salinas Padilla.

A mi compañero en la realización de este trabajo de investigación CARLOS GERARDO

PADILLA MEJIA por nunca dejarme de la mano.

iii

CONTENIDO

ACTA	A DE	SUSTENTACIÓN	i
DEDI	CAT	ORIA	ii
AGR	ADE(CIMIENTOS	iii
I.	INT	RODUCCION	1
II.	OBJ	ETIVOS	2
2.1	Ob	ojetivo general	2
2.2	0b	jetivos específicos	2
III.	REV	ISIÓN DE LITERATURA	3
3.1	Or	igen	3
3.2	Im	portancia	3
3.3	Ge	eneralidades del cultivar	4
3.4	Co	ontenidos nutricionales	4
3.5	Ar	natomía de la planta de cebolla	5
3.6	Ci	clo del cultivo de cebolla	5
3.7	Eta	apas en el desarrollo de la planta de cebolla y partición de asimilados	6
3.8	La	iniciación de la bulbificación	11
3.9	Sit	uación actual de la cebolla en Honduras	13
3.	9.1	Humedad relativa	13
3.	9.2	Suelo	14
3.	9.3	Clima	14
3.	9.4	Temperatura	14
3.	9.5	Luminosidad	15
3.	9.6	Riegos	15
3.	9.7	Precipitación	15
3.	9.8	Fecha de Siembra	15
3.10) Va	riedades más utilizadas en el país	16
3.11	l Es	tudios realizados en las variedades a evaluar	16
IV.	MA	TERIALES Y METODOS	19
4.1	IJŀ	picación del lugar	19

4.2	Materiales y equipo	19
4.3	Manejo del experimento	20
4	.3.1 Preparación del terreno	20
4.3	.2 Producción de plántulas	20
4	3.3 Transplante	20
4	Riego y fertilización	21
4	.3.5 Control de plaga, malezas, enfermedades	21
4	3.6 Cosecha	21
4.4	Descripción del tratamiento	22
4.5	Descripción de las variedades de cebolla evaluadas	22
4.6	Diseño y unidad experimental	23
4.7	Modelo estadístico	23
4.8	Análisis estadísticos	24
V.	RESULTADOS Y DISCUSIÓN	25
5.1	Desarrollo de planta (60 y 65 ddt)	25
5.2	Rendimientos totales en cebollas rojas y amarillas.	29
5.3	Rendimientos comerciales de cebollas rojas y amarillas	30
5.4	Porcentaje de rechazo	33
5.5	Calidad de Bulbos Rojos y amarillos	34
VI.	CONCLUSIONES	37
VII.	RECOMENDACIONES	38
	BIBLIOGRAFIA	39
VIII.		

LISTA DE CUADROS

Cuadro 1. Composición química de cebolla cada 100gr de producto fresco
Cuadro 2. Factores principales que afectan el crecimiento del bulbo en cebolla durante la
bulbificación10
Cuadro 3. Efecto del fotoperiodo
Cuadro 4. Tamaño de bulbos y horas luz.
Cuadro 5. Rendimiento comercial (Tm/ha) de variedades de cebolla, sembradas en épocas
de días más largo
Cuadro 6. Rendimientos comerciales (Tm/ha) de variedades de cebolla sembradas er
épocas de días cortos
Cuadro 7. Variedades de cebolla Amarillas
Cuadro 8. Variedades de cebollas rojas
Cuadro 9. Análisis de las variables
Cuadro 10. Número de hojas y altura (60 y 65 ddt) en cultivares de cebolla roja evaluadas
en el CEDEH-FHIA, Comayagua, Honduras25
Cuadro 11.Índices de Alternaria, diámetro de cuello y bulbo, coloración de hoja (65ddt) de
cuatro variedades de cebollas rojas evaluadas en el CEDEH-FHIA, Comayagua, Honduras
Cuadro 12. Porcentaje de incidencia de Alternaria porri, altura y número de hojas (60 ddt
de cebollas amarillas evaluadas en el CEDEH-FHIA, Comayagua, Honduras27
Cuadro 13. Porcentaje de incidencia de Alternaria porri, altura y número de hojas (65 ddt
evaluadas en el CEDEH-FHIA, Comayagua, Honduras
Cuadro 14. Rendimientos totales en 5 cultivares de cebollas amarillas cultivada en e
CEDEH -FHIA, Comayagua, Honduras30
Cuadro 15. Rendimientos Comerciales de 4 variedades de cebollas rojas evaluadas en e
CEDEH-FHIA, Comayagua, Honduras31
Cuadro 16. Rendimientos Comerciales de 5 variedades de cebollas amarillas evaluadas en
el CEDEH-FHIA, Comayagua, Honduras32
Cuadro 17. Antecedentes de cebollas amarillas de días con fotoperíodos intermedios
evaluadas en el CEDEH-FHIA, Comayagua32
Cuadro 18. Porcentajes de descarte, bulbos dobles y podridos en variedades amarillas
evaluadas en CEDEH-FHIA, Comayagua, Honduras33
Cuadro 19. Clasificación de bulbos en cebollas amarillas evaluados en CEDEH-FHIA
Comayagua, Honduras

LISTA DE FIGURAS

Figura 1. Esquema del ciclo normal de desarrollo de la cebolla	6
Figura 2. Inicio de la bulbificación	7
Figura 3. Modelo de formación del rendimiento en cebolla, etapa 1 o crecimiento del área folia	ar 9
Figura 4. Modelo de formación del rendimiento en cebolla, etapa 2 o bulbificación	9
Figura 5. Rendimientos totales en cultivares rojos	2 9
Figura 6. Calidad de bulbos de cultivares amarillos	34

LISTA DE ANEXOS

Anexo 1. Bitácora de aplicaciones foliares y al drensh (plaguicidas)	41
Anexo 2. Bitácora de aplicación de fertilizantes	43
Anexo 3. Registro de datos climáticos CEDEH-COMAYAGUA	46
Anexo 4. Resumen de ANAVA del experimento	50

Mendoza, R R.2013. Evaluación de rendimientos en cultivares ce cebolla roja y amarilla en días intermedios bajo condiciones del valle de Comayagua. Tesis ingeniero agrónomo. UNA. Catacamas Olancho, Honduras.

RESUMEN

Durante las condiciones agroclimáticas (días intermedios) de Marzo-Julio fueron evaluados 10 cultivares de cebolla (4 rojas y 5 amarillas) bajo las condiciones agroclimáticas de CEDEH, valle de Comayagua, con el fin de documentar la adaptabilidad y desempeño de cultivares evaluados como nuevos materiales de días intermedios. Durante la evaluación los materiales mostraron un comportamiento muy productivo y sus características de adaptación al fotoperiodo que fueron sometidos resultaron aceptables (color de hojas, tamaño de bulbos, firmeza de catáfilas, niveles de Alternaría). Los mejores rendimientos comerciales en esta evaluación se dio por parte de las cebollas rojas la variedad Noam 222 con un rendimiento comercial de 52270.83 kg.ha⁻¹. Así mismo el menor rendimiento comercial fue registrado por Red Queem 35201.39 kg.ha⁻¹. De acuerdo con los porcentajes de rendimientos comerciales fue también Noam 222 con un 99.72 % seguido del cultivar Mar rojo con 99.42% y con menor porcentaje comercial se presentó Reed Burger con un 93.29 %. También en la evaluación se obtuvieron los rendimientos totales que muestra a la variedad Noam 222 con 52423.61kg.ha⁻¹como la variedad que mejores rendimientos totales alcanzo, seguido de Mar Rojo con 42659 kg.ha⁻¹, y por ultimo Red Queem con 35576.39 kg.ha⁻¹. Por parte de los cultivares amarillos los mejores resultados para los rendimientos totales y comerciales los alcanzó la variedad Cimarron con resultados superiores a los 20,000 kg.ha⁻¹. Seguido de leona con un rendimiento comercial de 10215.28 kg.ha⁻¹. Así mismo la variedad que menores resultados comerciales obtuvo fue Guadalupe con 9166.67 kg.ha⁻¹. La variedad SK 110467 no presentó rendimientos totales ni comerciales ya que el cultivar no fue desarrollado para ser cultivado en estas épocas. La menor cantidad de bulbos podridos los obtuvo Cimarron con 9988.89 kg. ha⁻¹, por el contrario las peores perdidas las obtuvo Altagracia con 16477.78 kg.ha⁻¹, seguido por Candy con 14421.53 kg.ha⁻¹, cabe destacar que estas variedades se vieron afectadas por las condiciones que se dieron a finales de junio los cuales presentaron lluvias por la tarde y altas temperaturas por la mañana esto creó una alta humedad que proliferó el desarrollo de la bacteria (Erwinia carotovora) llamada también pudrición bacteriana, esta enfermedad es caracterizada por presentar una pudrición acuosa, decoloración amarilla a café de las capas, olor fétido, emisión de líquido viscoso y marchites, que fueron los síntomas que se observaron.

Palabras clave: rendimiento comercial y total (RC, RT), diámetro (Ø), tamaños (tam 1, tam 2, tam 3.), podridos (Pod), prueba de medias Fisher (LSD).

I. INTRODUCCION

En Honduras se tiene una gran demanda de cebolla en los mercados locales para su consumo fresco como también para su proceso, con esto las compañías generadoras de semillas, año con año están lanzando nuevos materiales adaptados a diferentes épocas del año y con resistencia a plagas y enfermedades, con el fin de mejorar las producciones en nuestro país.

El mayor porcentaje del consumo total del país proviene de parte de las importaciones de países como Estados Unidos y Canadá entre otros, esto nos indica que en nuestro país no se produce lo suficiente para cubrir la demanda actual de cebollas que cubra las exigencias de nuestros mercados ya sea porque no existen suficientes productores que se dediquen a este rubro o por que los materiales utilizados no tienen la capacidad genética para producir altos rendimientos, ni la adaptación a distintas épocas del año, esto crea la necesidad de importar alimentos de este tipo de otros países.

La importancia de realizar este trabajo, es de identificar cultivares de días intermedios que presenten un buen potencial productivo en estas épocas del año. Por medio de la identificación de las mejoras que se puedan obtener, se espera que se adopten sistemas de producción todo el año.

Teniendo en cuenta que la producción del país se ve mermada por las épocas de siembra, se busca que los productores que están centralizados a este rubro, puedan producir no solo en una época del año si no poder hacerlo todo el año, estudios realizados por la FHIA y otras empresas demuestran que se puede sembrar cebolla todo el año, con cultivares que se adaptan perfectamente a las diferentes zonas y épocas de siembra, y así poder incrementar la producción de cebolla en nuestro país para poder cubrir la demanda nacional.

II. OBJETIVOS

2.1 Objetivo general

Evaluar el comportamiento de nuevos cultivares de cebollas (*Allium cepa*) en días con fotoperíodos intermedios para medir su desempeño y productividad.

2.2 Objetivos específicos

- Determinar las características agronómicas y calidad de los bulbos de los cultivares evaluados para saber si cumplen con las especificaciones del mercado.
- Determinar la influencia que tienen los días con fotoperíodos intermedios en relación a variedades de *Allium cepa* amarillas y rojas para determinar su respuesta a la formación de bulbos.
- Identificar nuevos materiales de días con fotoperíodos intermedios con alto potencial productivo en el valle de Comayagua para incrementar la producción en diferentes épocas del año.

III. REVISIÓN DE LITERATURA

3.1 Origen

La cebolla, *Allium cepa L.*, es una planta antigua que se originó en las regiones montañosas de Asia central. Fue "domesticada" hace tiempo, y tal como el maíz han perdurado gracias al trabajo de los agricultores durante muchas generaciones. Algunas especies relacionadas, parcialmente cruzables, tales como *A. vavilovii* pueden encontrarse en forma silvestre, y otras cultivadas, tales como *A. fistulosum* también pueden producir híbridos relativamente estériles con *Allium cepa*. No es posible volver a la región de origen y encontrar una especie idéntica que pueda ser cruzada en su totalidad con la cebolla cultivada. Esto demuestra que en todo el mundo, las cebollas han evolucionado junto con los sistemas de cultivo y han acompañado las migraciones de personas durante mucho tiempo (Currah.1998).

3.2 Importancia

El consumo de cebolla está asociado con la reducción de lípidos en sangre, el colesterol y la actividad antiplaquetaria, factores que contribuyen a disminuir los riesgos de padecer enfermedades cardiovasculares, una de las principales causas de muerte en muchos países. El sabor en la cebolla está dado por compuestos azufrados volátiles y no volátiles y en menor medida por azúcares solubles. La pungencia se desarrolla cuando compuestos azufrados conocidos como precursores de sabor, luego de cortado el bulbo y cuando se rompe el tejido, reaccionan con una enzima llamada allinasa. Esta enzima convierte a los precursores de sabor en compuestos azufrados muy inestables, responsables del sabor y el efecto lacrimógeno de la cebolla (Galmarini, citodo por Dondo *et al*, 2007)

3.3 Generalidades del cultivar

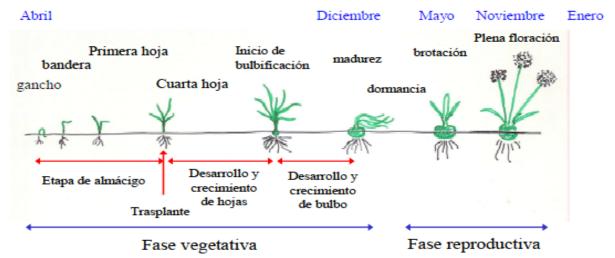
La cebolla (*Allium cepa*) es una planta herbácea bienal que pertenece a la familia Amarilidáceae y tiene su centro de origen en el Asia central. En cuanto a su morfología, la cebolla presenta un sistema radicular formado por numerosas raicillas fasciculadas, color blanquecino, poco profundas que salen a partir de un tallo a modo de disco o "disco caulinar". Este disco caulinar presenta numerosos nudos y entrenudos (muy cortos), y a partir de este salen las hojas, las cuales tienen dos partes claramente diferenciadas: una basal, formada por las vainas foliares engrosadas como consecuencia de la acumulación de sustancias de reserva, y la otra terminal formada por el "filodio" que es la parte verde y fotosintéticamente activa de la planta. Las vainas foliares engrosadas forman las túnicas del bulbo. (Marcia, 2010)

3.4 Contenidos nutricionales

Cuadro 1. Composición química de cebolla cada 100gr de producto fresco.

Agua	86-90 %
Proteínas	0.5-1.6 %
Lípidos	0.1-0.6 %
Hidratos de Carbono	6-11 %
Valor energético	20-37 calorías
Vitamina A	40 U.I.
Vitamina C	9-23 miligramos
Fósforo	27-73 miligramos
Calcio	27-62 miligramos
Hierro	0.5-1 miligramos
Potasio	120-180 miligramos
Sodio	10 miligramos

Fuente: Rothman y Dondo. 2007


3.5 Anatomía de la planta de cebolla

El tallo de la planta de cebolla es un disco basal que se encuentra por debajo de la superficie del suelo. En la parte superior y central de este disco se encuentra el meristemo apical, donde se inician las hojas, en forma opuesta y alternada, de tal manera que las hojas emergen en dos filas a 180° una de otra. Las hojas tienen dos partes bien diferenciadas: la vaina y la lámina. Las vainas de las hojas rodean completamente el punto de crecimiento formando un tubo que se proyecta desde el tallo y encierra en su interior a las hojas más jóvenes. Toda esta estructura se denomina 'falso tallo'. En la unión de la vaina y lámina de la hoja hay una abertura por la cual sale la lámina de la siguiente hoja. La lámina es un tubo hueco cerrado en la punta, ligeramente achatado en su cara superior. (Dogliotti *et al* 2011)

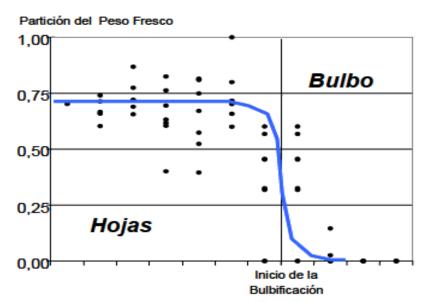
La raíz embrionaria muere rápidamente y el sistema radicular se forma por raíces que salen continuamente del tallo y no se ramifican. Las raíces más jóvenes aparecen en la parte externa y superior del tallo. Alrededor del 90% del sistema radicular en la cebolla se concentra en los primeros 20 cm de suelo (De Mason, 1990).

3.6 Ciclo del cultivo de cebolla

La cebolla tiene un ciclo de vida bi-anual. En la primera estación de crecimiento se forma el bulbo (fase vegetativa) y en la segunda se forman las inflorescencias y se produce semilla botánica (fase reproductiva), la cual es el modo de reproducción de esta especie. En nuestro país, el ciclo se inicia en otoño y termina en primavera o inicios del verano. En regiones de latitudes más altas, con inviernos muy fríos y veranos frescos, el ciclo se inicia con la primavera y termina a mediados o fines del verano (Dogliotti *et al* 2011).

Fuente: Dogliotti 2011

Figura 1. Esquema del ciclo normal de desarrollo de la cebolla


3.7 Etapas en el desarrollo de la planta de cebolla y partición de asimilados

Teniendo en cuenta solamente la fase vegetativa del ciclo del cultivo de cebolla, o sea el primer año o la fase de producción de bulbos, podemos distinguir dos etapas bien diferentes del punto de vista del destino de los asimilados para el crecimiento de las distintas partes de la planta. La primera etapa va desde la emergencia hasta el inicio de la bulbificación y la segunda etapa va desde el inicio de la bulbificación hasta la maduración del bulbo o cosecha.

En la primera etapa la planta dedica los asimilados disponibles para el crecimiento del sistema radicular, y sobre todo del área foliar. En esta etapa se observa aumento en el número de hojas y en el área de las láminas de las hojas, de tal manera que cada nueva hoja alcanza un tamaño mayor que la hoja inmediata anterior. La principal fosa de la planta son las láminas de las hojas nuevas, seguido por las vainas y el sistema radicular. En esta etapa las vainas se mantienen finas y se van acumulando a medida que aparecen hojas nuevas. (Dogliotti *et al* 2011).

Cuando la planta recibe del ambiente las condiciones adecuadas para iniciar la bulbificación, el destino de los asimilados disponibles para el crecimiento cambia bruscamente en esta segunda etapa dejan de aparecer hojas nuevas. Las láminas de las hojas nuevas ya emergidas terminan de crecer, pero no alcanzan un tamaño superior a las hojas anteriores.

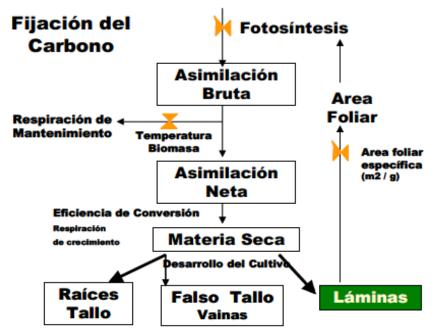
Las hojas que ya están formadas y que no tienen láminas emergidas aún, quedan sin formar lámina. También cesa la aparición y elongación de nuevos primordios radiculares. Entonces, una vez iniciada la bulbificación, todos los asimilados disponibles para el crecimiento se destinan a la elongación celular y acumulación de reservas en la base (parte inferior de las vainas) de las 4-6 hojas más jóvenes de la planta, para formar el bulbo. En la figura 2. Se observa cómo cambia bruscamente el destino de los asimilados disponibles para el crecimiento al iniciarse la bulbificación. Antes del inicio de la bulbificación aproximadamente el 75% del incremento del peso fresco de la planta de una observación a la siguiente se debía a las láminas de las hojas. Posteriormente casi el 100% del crecimiento se debe a aumento de peso del bulbo. (Dogliotti *et al* 2011).

Fuente: Dogliotti 2011

Figura 2. Inicio de la bulbificación

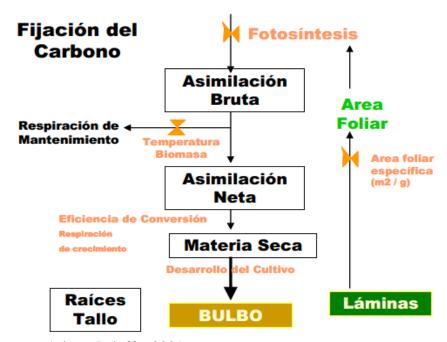
Fracción del aumento del peso fresco total de la planta de cebolla (sin tener en cuenta raíces) explicado por el crecimiento de las láminas de las hojas. Luego del inicio de la bulbificación el incremento del peso fresco de láminas se hace cero, y el único órgano que crece es el bulbo. Los puntos son datos obtenidos de 8 cultivos (3 cultivares e diferentes localidades). (Arias y Peluffo, 2001).

En las Figuras 3 y 4 se representa esquemáticamente un modelo de crecimiento de este cultivo en la etapa 1 y 2, respectivamente. El rendimiento del cultivo de cebolla depende de la tasa de crecimiento del bulbo durante el período de bulbificación y de la duración de este período. Vimos que una vez que se inicia la bulbificación, todos los asimilados disponibles se destinan al crecimiento del bulbo, por lo tanto la tasa de crecimiento del bulbo depende de la Tasa de Asimilación Neta (TAN, Kg CH₂O ha-1 d-1) durante la bulbificación y del factor de conversión (FC) de azúcares simples en materia seca de bulbo. La TAN depende de la cantidad de radiación interceptada por las hojas y de la eficiencia con que esa luz se utiliza para producir asimilados y finalmente crecimiento del bulbo


Dónde:

TC es tasa de crecimiento del bulbo

TAN es tasa de asimilación neta durante la bulbificación


FC es factor de conversión de azucares simples en materia seca del bulbo

EUL es eficiencia de uso de la luz en azucares simples producidos por mega joule de radiación interceptada por las hojas.

Fuente: Arias y Peluffo, 2001

Figura 3. Modelo de formación del rendimiento en cebolla, etapa 1 o crecimiento del área foliar.

Fuente: Arias y Peluffo, 2001

Figura 4. Modelo de formación del rendimiento en cebolla, etapa 2 o bulbificación

De este conjunto de cuatro ecuaciones relacionadas podemos deducir tres variables fundamentales para el rendimiento y que son afectadas en forma importante por el manejo del cultivo: la cantidad de **radiación interceptada**, la **eficiencia de uso de la luz** y la **duración de la bulbificación**. En el Cuadro 2 se presentan los factores principales que afectan a cada una de estas variables. La radiación interceptada por el cultivo depende principalmente de la cantidad de radiación fotosintéticamente activa (PAR) y del área foliar que tenga el cultivo durante la bulbificación.

La (PAR) incidente es una variable climática que depende del lugar de cultivo y la época del año en la que se inicie la bulbificación, que depende a su vez de la variedad que se esté cultivando. Cómo vimos anteriormente, el crecimiento del área foliar del cultivo se detiene al inicio de la bulbificación, por lo tanto el cultivo alcanza su IAF máximo en ese momento (Figuras 3 y 4).

El IAF del cultivo va disminuyendo gradualmente desde inicio de bulbificación hasta la maduración del bulbo. El valor del IAF a inicio de bulbificación es una de las variables con mayor incidencia en el rendimiento final del cultivo. Depende de las condiciones de temperatura, disponibilidad de agua y nutrientes en la etapa de desarrollo y crecimiento de las láminas, y fundamentalmente, de la duración de este período, como veremos más adelante.

Cuadro 2. Factores principales que afectan el crecimiento del bulbo en cebolla durante la bulbificación.

radiación interceptada	eficiencia de uso de la luz	duración de la bulbificación		
Área Foliar activa	Temperatura media e intensidad	Temperatura media		
Theu I only uctive	de radiación	Temperatura media		
Radiación incidente	Disponibilidad de agua	Porcentaje de la radiación incidente interceptada por el cultivo		
Competencia de malezas	Disponibilidad de agua Efecto de enfermedades y plagas.	Disponibilidad de agua		

Fuente: Arias y Peluffo, 2001

La eficiencia de uso de la luz depende de la temperatura media. La cebolla es una planta C3 y tiene un rango óptimo para la fotosíntesis neta entre 19 y 22 °C. Por encima o por debajo de este rango, la EUL disminuye. Como ocurre con todos los cultivos, la EUL disminuye a medida que la intensidad de radiación aumenta. Déficit hídrico o de nutrientes también afectan negativamente la EUL.

La duración del período de bulbificación está afectada fundamentalmente por la temperatura media y el porcentaje de la radiación incidente interceptada por el cultivo. Esta última variable es directamente dependiente del IAF al inicio de bulbificación, por lo que podemos decir que cuanto mayor es el IAF, menor es la duración del período de bulbificación. Brewster (1990) ajustó una regresión múltiple en la que la duración de la bulbificación fue explicada en un 74% por el porcentaje de radiación interceptada y la temperatura.

3.8 La iniciación de la bulbificación

El momento de inicio de la bulbificación se determina en la práctica mediante el cálculo del "índice de bulbificación" (IB). Este se calcula como la relación entre el diámetro mayor del bulbo dividido el diámetro menor en la zona del falso cuello. Si este índice es igual o mayor que dos se considera iniciada la bulbificación.

El inicio de la bulbificación es afectado por varios factores del ambiente, pero el factor único que determina la bulbificación en cebolla es **el fotoperíodo**. La planta de cebolla es una planta con respuesta de Día Largo (DL) y cualitativa al fotoperiodo. Si el largo del día no supera un determinado valor crítico, dependiente de la variedad, la planta no Bulbifica (Cuadros 3 y 4). No importa cuánto tiempo pase ni cuál sea el valor de otras variables, si no se supera ese fotoperiodo crítico no hay bulbificación. (Dogliotti *et al* 2011).

La bulbificación tiene lugar como consecuencia de un aumento de fotoperiodo (período de iluminación diurna) acompañado de un ascenso de las temperaturas, ya que la cebolla es una planta de día largo. El bulbo de la cebolla está compuesto por células que tienen un tamaño relativamente grande y poseen formas alargadas u ovaladas. Dichas células se encuentran unidas entre sí por una sustancia producida por la pared celular y cuya función es darle estructura firme y protección al fruto de la cebolla. (Marcia, 2010)

Duración en horas luz del día. (Fotoperiodo). Existen tres grupos de variedades:

- De día corto: 10 a 12 horas.
- De días intermedios: 13 a 14 horas.
- De día largo: más de 15 horas. (Brizuela, 2003)

Cuadro 3. Efecto del fotoperiodo

Fotoperiodo	Resultado
10 horas.	No Dulhifiae maduce heige
10 noras.	No Bulbifica, produce hojas indefinidamente
13 horas.	Bulbifica, pero sigue produciendo hojas
14.9 horas	Bulbifica, las hojas senescen y el bulbo madura
20 horas.	Bulbifica las hojas senescen y el bulbo madura

Gardner y Allard; citado por Dogliotti. 2011

Cuadro 4. Tamaño de bulbos y horas luz.

Fotoperiodo (h)	Bulbos Normales (%)
11	50
12	75
13	80
14	95
15	100

Torres, 1959

Sin embargo existen otros factores externos y de la propia planta que pueden hacer variar los requerimientos de fotoperíodo crítico (FPc) para bulbificar. El más importante de estos factores es la **temperatura media**. Como en todos los procesos vegetales existe una temperatura mínima por debajo de la cual no hay bulbificación. Por encima de este mínimo, a medida que aumenta la temperatura se ha observado que el valor del FPc disminuye. (Brewster, 1994).

3.9 Situación actual de la cebolla en Honduras

En Honduras se produce cebolla amarilla, roja y blanca, la cual se comercializa en su mayoría en el mercado interno, aunque una pequeña cantidad se exporta principalmente hacia El Salvador. Hay épocas del año en las que se importa cebolla de otros países, aun cuando podemos incrementar la producción y la productividad en las zonas tradicionales de producción y en otras zonas del país en las que también hay potencial de producción. En Honduras se dispone de la tecnología adecuada para incrementar rendimientos, para el eficiente curado y almacenamiento de la cebolla a fin de reducir importaciones e incrementar los ingresos de los productores. (Curso de , 2010)

3.10. Requerimientos del cultivo

3.9.1 Humedad relativa

La humedad relativa tiene una fuerte influencia en la incidencia de enfermedades fungosas en la cebolla. Las zonas áridas (secas) con un verano bien marcado con varios meses libres de lluvia son ideales para la producción de cebolla si reúnen las demás condiciones necesarias para el cultivo. Días calientes y secos son favorables para una buena maduración y curado natural de la cebolla en el campo. La condensación de la humedad relativa (niebla o neblina) durante las horas frías del día es desfavorable porque favorece al desarrollo de enfermedades foliares. (Fintrac, 2006)

El exceso de humedad al final del cultivo repercute negativamente en su conservación. Se recomienda que el suelo tenga una buena retención de humedad en los 15-25 cm superiores del suelo. (Valadez, 2001)

3.9.2 **Suelo**

De preferencia, suelos francos bien drenados, pero puede sembrarse en cualquier tipo de suelo, siempre y cuando se le den las condiciones para no sufrir de encharcamiento, que es su mayor problema. (Lardizabal, 2007)

La cebolla prefiere un suelo suelto, fértil, sirven los suelos franco arenoso, la turba y el limo pero rechazan la arcilla, la arena o la grava. Además que éste debe ser suelto, profundo y bien aireado ya que la cebolla no se adapta a suelos compactos y excesivamente húmedos. La cebolla requiere de suelos preparados y ricos en humus; los suelos pueden ser textura limo arenosa, con gran cantidad de materia orgánica; no tolera la acidez alta, siendo el promedio de pH entre 6,0 y 7,5. (Hessayon, 2000)

3.9.3 Clima

Se desarrolla bien a una altura de 500 a 1,800 m.s.n.m, no tolera excesos de agua; se produce en zonas con una precipitación que va entre los 500 y 1,200 mm/año. (Lardizabal, 2007)

3.9.4 Temperatura

La óptima es 20-25°C, a mayor temperatura más rápida es la bulbificación, temperaturas bajas o muy altas, cerca de 40 °C, retrasan la aparición del bulbo. Además de la longitud del día y la temperatura existen otros factores de manejo que influyen en la bulbificación: (Lardizabal ,2007)

3.9.5 Luminosidad

El fotoperíodo es un factor importante para la formación del bulbo y según la variedad, el número de horas requeridas por ella varia de 12 a 15 horas/día. Las variedades de día intermedio producen mejor en el trópico entre los 28 y 40° C. Los de día largo se utilizan en latitudes con temperaturas mayores a 36°C, ya que requieren 14 o más horas de luz solar por día. A medida que la temperatura es más alta el fotoperiodo puede ser más corto, por esto variedades de día largo pueden adaptarse a días intermedios, si las temperaturas son altas y así sucesivamente. (Federación Nacional de Cafeteros 2000)

3.9.6 Riegos

El cultivo de la cebolla, por poseer un sistema radicular superficial responde favorablemente a riegos más frecuentes ya que éstos mantienen el nivel de humedad de forma constante en la zona radicular. Si son frecuentes y abundantes al momento de iniciarse la bulbificación, este proceso se retrasa demorando la maduración del bulbo. (Petit, 2008)

3.9.7 Precipitación

No tolera excesos de agua; se produce en zonas con una precipitación que va entre los 500 y 1,200 mm/año. (Rothman y Dondo. 2007).

3.9.8 Fecha de Siembra

Puede ser todo el año, para lo cual se ha tenido que hacer investigación sobre las variedades que se adapta a cada mes, pues este cultivo es afectado grandemente por el fotoperíodo (Lardizabal. 2007)

3.10 Variedades más utilizadas en el país

Son muchas las variedades de cebolla y se clasifican de acuerdo al fotoperiodo. Pueden ser de fotoperíodo largo, intermedio o corto, de color amarillo, blanco o rojo. En Honduras se cultivan variedades de día intermedio y corto. USAID-RED, tomando en cuenta la importancia del cultivo, financió investigación con la FHIA para que realizara una validación en forma mensual de las variedades de las diferentes casas de semillas, logrando hoy día ofrecer un boletín (USAID RED Selección de Variedades de Cebolla, Noviembre 2005), en el cual se encuentra la distribución por mes de cada variedad a utilizar. Año con año las compañías de semillas sacan nuevos materiales los cuales deben validarse en la finca con pequeñas pruebas y por la FHIA continuamente, ya sea financiada por las compañías semilleras o con fondos propios. Otras características varietales son la forma, resistencias o tolerancias a enfermedades, etc. La variedad a sembrar dependerá del mercado donde vamos a vender, la época del año en que se va sembrar y la experiencia del productor. (Lardizabal, 2007).

3.11Estudios realizados en las variedades a evaluar

Según estudios realizados se evaluaron variedades de cebolla en 12 fechas de siembras por la FHIA, (una mensual) durante un año, para día intermedio y día corto. En Comayagua (565msnm) las variedades de día intermedio Caballero, Candy y Gelman tuvieron en general el mejor comportamiento en el período de día más largo (15 de marzo al 15 de junio), produciendo rendimientos comerciales de 42.7 y 30.9 Tm/ha en la siembra del 15 de Abril, siguiendo la Gelman Franklin y Canterbury, con 30.2 Tm/ha respectivamente. (FHIA, 2005).

Cuadro 5. Rendimiento comercial (Tm/ha) de variedades de cebolla, sembradas en épocas de días más largo.

CICLO DE SIEMBRA							
Variedades	7	8	9	10	11	12	
	15-Feb	15-Mar	15-Abr	15-May	15-jun	15-Jul	
Caballero	7.72	17.5	30.9	8.8	4.5	14.3	
Candy		16.6	42.7	6.9	3.5		
Texas Grano 438	11.2	15.2	11.6	12.4	5	13.1	
Gelma	4.5	12.4	30.2	4.7	2.7	7.8	
Reforma	9.48		17.4	11.2	7.1	19.1	

FHIA. 2005

Los más altos rendimientos fueron obtenidos en la siembra del 5 de Abril, y en segundo lugar el 15 de marzo. El rendimiento en las otras fechas de siembra (15 de Mayo, 15 de Junio, 15 de Julio) fué más bajo debido a una mayor incidencia de enfermedades. También se obtuvo un bajo porcentaje de rendimiento comercial de las variedades, en su mayor parte fue debido a bulbos dañados por pudrición causada ya se ha por hongo o por bacterias. Según (Vargas, *et. al.*, 2005) las condiciones de alta humedad afectaron negativamente el comportamiento de las variedades, produciendo una alta incidencia de enfermedades fungosas y bacterianas. Además el curado de los bulbos no se pudo realizar en bulbos con tallos gruesos, con excesiva humedad, y con tendencia a brotar.

Para las variedades evaluadas en los días cortos, las que tuvieron los mejores rendimientos comerciales en promedio sobre todas las variedades de siembra fueron, Reforma y Jaguar (Cuadro 4). La variedad Reforma se destacó más en la siembra del 15 de septiembre, 15 de octubre y 15 de noviembre (53.9, 52.1, 55.1 Tm/ha⁻¹). Las Fechas de siembra correspondientes 1 y 6 fueron las más problemáticas. La primera debido al exceso de humedad, y el alto porcentaje de preñez (formación prematura de bulbo) debido a la desadaptación genética de las variedades.

Las variedades Reforma, Texas Grano 438 son las más tardías y son bastante tolerantes a Alternaria. (FHIA, 2005). Por otro lado la variedad Texas Grano 438 mostró un porcentaje muy bajo de rendimiento comercial. Vargas, et., al. Manifiesta que fue debido a un alto porcentaje de bulbos dobles y tallos gruesos y en menor grado pudrición de los bulbos.

Cuadro 6. Rendimientos comerciales (Tm/ha) de variedades de cebolla sembradas en épocas de días cortos.

CICLO DE SIEMBRA							
Variedades	1	1	1	1	1	1	
	15-Agos	15-Sep	15-ct	15-Nov	15-Dic	15-Ene	
reforma	3.9	53.9	52.1	55.7	35.6	20.5	
Texas Grano 438	6.9	18.3				20.3	
Granex 429	5.5	18.7	45.2	33.7	41.3	24.7	
Jaguar	7.3	42.8	50	42.8	40.6	12.6	

FHIA 2005

IV. MATERIALES Y METODOS

4.1 Ubicación del lugar

La investigación se llevó a cabo a partir de la segunda etapa, al momento que el cultivo alcanzó su madurez fisiológica para su cosecha, la toma de datos tuvo lugar en el momento que la plantas alcanzó su madurez fisiológica y las condiciones ambientales lo permitieron, desde esta parte se empezó a evaluar las variables de respuesta propuestas de esta investigación, estas consistieron en la determinación de altura de la planta al momento de la cosecha y los rendimientos totales y comerciales así como también los índices de pérdidas que se muestren en cada uno de los cultivares a evaluar, la primera parte fue manejada por parte del personal del CEDEH-FHIA, que consistió desde la preparación de plántulas, establecimiento de los tratamientos en campo y el manejo respectivo.

La evaluación de diez cultivares de cebollas amarillas y rojas se realizó en el CEDEH-FHIA lote: 7 con un tamaño de 2500 m². Está ubicado a 3 Km de la ciudad de Comayagua, desvió al CEDAH, encontrándose a una altura de 575 msnm, con medias anuales de temperatura de 24°C, 54% de humedad relativa y 833.21 mm de precipitación promedio acumulada anual. (Marcia, 2010)

4.2 Materiales y equipo

Para realizar este experimento se utilizaron semillas comerciales de cultivares rojos y amarillos, bandejas, sistema de riego y fertiriego, cabuyas, cinta métrica, material de oficina, estacas, pie de rey, balanza, tijeras de metal y además de la utilizar la maquinaria agrícola para la preparación del suelo.

4.3 Manejo del experimento

4.3.1 Preparación del terreno

Para la preparación del terreno primero se realizó la limpieza del terreno, luego se aplicó un herbicida pre emergente para el control de malezas al momento de la siembra, antes de la siembra en campo definitivo, se realizó un pase de aradura y dos de rastra, un bordeo y un rotatiller, posteriormente se procedió al marcaje y división de los bloques. (CEDHE-FHIA)

4.3.2 Producción de plántulas

Los cultivares se sembraron a nivel de semillero en el mes de marzo hasta el 19 de abril, utilizando bandejas de 200 cavidades y dándosele el respectivo manejo de riego, fertilización y controlando las temperaturas dentro del medio según la especificaciones del CEDEH-FHIA.

4.3.3 Transplante

El transplante de las plántulas a campo definitivo se realizó a los 40 días después del establecimiento en semillero. Las plántulas se transportaron en canasta para evitar que sufran algún tipo de daño, Durante la distribución, las plantas se colocan sobre la cama al lado de cada postura. Se debe evitar bajo todo punto maltratarlas o que estén expuestas al sol por mucho tiempo sin ser sembradas. Luego se utilizó una solución arrancadora para evitar bolsas de aire para evitar la proliferación de bacterias que puedan causar pudrición de raíz y también a impulsar su desarrollo radicular. (CEDEH-FHIA)

4.3.4 Riego y fertilización

Se utilizó un programa de fertilización de riego por goteo, utilizando un sistema de doble cinta de riego con una descarga de 1.1 Litros/hora, con una frecuencia de 3 riesgos por semana. (Anexo 2)

4.3.5 Control de plaga, malezas, enfermedades

Control de plagas se realizó de acuerdo a la incidencia de las mismas, las cuales se monitorearon dos veces por semana para medir los niveles de *thrips tabaci*, lepidópteros (spodoptera). Para su control químico se aplica, Engeo, Match, Sunfire, Roural y Curion. Para el control de *alternaría porri* se aplica Mancozeb en forma previa y Belis, Amistar, de forma preventiva y curativa. Estos productos curativos se rotan para evitar la generación de resistencia por parte de este hongo. (Anexo 1)

4.3.6 Cosecha

La cosecha del experimento consistió primeramente en la recolección de los bulbos de los cultivares rojo a los 80 ddt antes de que se empezaran acamar y que las plantas tienen que estar en buenas condiciones para ser destinadas a un mercado. Los materiales amarillos se les dio una semana más por su manejo de poscosecha, luego de esto se procedió al descole de la cebolla, ½ Pg después del bulbo debido a las condiciones climáticas que estaban sufriendo los bulbos se retiraron del campo y el proceso de curado continuo en un ambiente controlado, expuestos a las horas luz y cubiertos en días de lluvia.

4.4 Descripción del tratamiento

En el Cuadro 7 se muestran las variedades utilizadas en el experimento y la aleatorización de los tratamientos en cada uno de los bloques, los tratamientos de cebollas amarillas y rojas serán evaluados por separado por medio de esto se espera conocer cuáles de los tratamientos son los más óptimos para estas épocas.

4.5 Descripción de las variedades de cebolla evaluadas

Cuadro 7. Variedades de cebolla Amarillas

Tratamientos	Color	Variedades	Aleatori		rización	
			Bloq		ques	
			I	II	III	IV
T1	Amarilla	Guadalupe	Guadalupe	Leona	Cimarron	SK 110467
T2	Amarilla	Candy	Candy	SK110467	Altagracia	Candy
T3	Amarilla	Altagracia	Altagracia	Candy	Guadalupe	Leona
T4	Amarilla	Leona	Leona	Guadalupe	Candy	Altagracia
T5	Amarilla	Cimarron	Cimarron	Altagracia	SK110467	Cimarron
T6	Amarilla	SK 110467	SK 110467	Cimarron	Leona	Guadalupe

Fuente: elaboración propia

Cuadro 8. Variedades de cebollas rojas

Tratamientos	Color	Variedades	Aleatorización			
			Bloques			
			I	II	III	IV
T1	Roja	Red	Red	Noam	Red	Noam
		Queem	Queem	222	Burger	222
T2	Roja	Mar	Mar Rojo	Red	Noam	Red
		Rojo		Burger	222	Burger
T3	Roja	Noam	Noam	Red	Mar	Red
		222	222	Queem	Rojo	Queem
T4	Roja	Red	Red	Mar	Red	Mar Rojo
	-	Burger	Burger	Rojo	Queem	_

Fuente: elaboración propia

4.6 Diseño y unidad experimental

El diseño experimental utilizado fue de bloques completos al azar (**DBCA**), donde se evaluaron 10 materiales de días intermedios 6 de cebollas amarillas y 4 de cebollas rojas, con cuatro repeticiones por tratamiento siendo aleatorizados en los bloques.

Con una área de 2500 m² y cuatro bloque de 12 m de largo, se utilizó un sistema de siembra de cuatro hileras en cada uno de los bloques separados a 20 cm entre hileras y 10 cm entre planta y planta, con un total de cuatro hileras por cama obteniéndose así una densidad de 266,667 plantas.ha⁻¹.Asi mismo se utilizó un sistema de riego con doble cinta por cama.

4.7 Modelo estadístico

$$Yij = \mu + \alpha i + \beta j + \epsilon ij$$

Yij = la respuesta de la unidad experimental kth recibiendo el tratamiento ith en el bloque jth

 $\mu = media poblacional$

 α = el efecto debido al tratamiento i

i = Guadalupe, Candy, Altagracia, leona, cimarrón, sk 110467, mar rojo, red queem, red Burger, Noam.

 β = el efecto debido al tratamiento j

j = I, II, III, IV

€ = error experimental asociado con la respuesta de una unidad experimental en el bloque. €($0, \alpha_{\varepsilon}^2$)

4.8 Análisis estadísticos

A los datos obtenidos de las variables se les aplicaron un análisis de varianza del 5%(0.05) de significancia los datos que presentaron diferencia estadísticamente significativa se les aplicara una prueba de medias de diferencia mínima significativa (LSD) de Fisher. El análisis estadístico se realizó utilizando el paquete estadístico InfoStat vers8. Los análisis para cebollas amarillas y rojas se realizaron por separado para poder observar el comportamiento de cada uno de los tratamientos.

Metodología de análisis de variables

Cuadro 9. Análisis de las variables

Variables	Análisis
Días al acame	Promedio
Rendimientos totales	ANAVA prueba de medias
Rendimientos comerciales	ANAVA prueba de medias
Porcentaje de rechazo	ANAVA prueba de medias

Fuente: Elaboración propia

V. RESULTADOS Y DISCUSIÓN

5.1 Desarrollo de planta (60 y 65 ddt)

Para medir el desarrollo de las plantas se tomó a los 60 y 65 días después de transplante midiendo la altura de 5 plantas a nivel de suelo hasta la punta de la hoja de mayor tamaño y a su vez el conteo de hojas por planta completamente al azar. Con un pie de rey se tomaron los diámetros tanto de cuello y bulbo. Mediante la observación de cada una de las variedades se determinó el porcentaje por daño producido por *Alternaria porri* (mancha purpura).

Cuadro 10. Número de hojas y altura (60 y 65 ddt) en cultivares de cebolla roja evaluadas en el CEDEH-FHIA, Comayagua, Honduras.

Cultivar	Altura (cm)	Cultivar	No. de hojas
Noam 222	65,76 a	Noam 222	8,09 a
Red Burger	64,79 a b	Mar Rojo	8,04 a
Mar Rojo	60,94 b c	Red Queem	7,49 a b
Red Queem	59,11 c	Red Burger	7,20 b
CV (%)	7.47	CV (%)	7.74
\mathbb{R}^2	0.32	R^2	0.34
P-valor	0.0269	P-valor	0.0155

Letras distintas indican diferencias significativas ($p \le 0.05$)

Todos los cultivares evaluados presentaron buen desarrollo vegetativo; para la variable altura de plantas y número de hojas por planta (60 y 65ddt).el ANAVA mostró diferencia significativa entre los cultivares (p-valor, 0.0269 y 0.0155). La prueba LSD detecto al cultivar Noam 222 alcanzando la mayor altura (65.76 cm) y estadísticamente superior a los demás cultivares. Los cultivares Mar Rojo y Reed Queem 60.94 y 59.11cm, respectivamente (Cuadro 10). Con relación al número de hojas, la prueba LSD identificó

que la variedad con mayor número de hojas fue Noam 222 produciendo 8.09 hojas/planta por su parte la de menor cantidad de hojas acumuladas fue Red Burger con 7.20 hojas/planta.

Para los cultivares rojos lo más deseable es que la planta produzca un buen número de hojas ya que su consumo va desde el bulbo, tallo frescos y hojas; en nuestro medio la cebolla roja no se utiliza para embolsar (descolar) su comercialización es en mates o redes de 80, 90 y 120 lb, entre mayor desarrollo vegetativo tenga la planta con menor cantidad se llenan los matates y nos brinda una mayor cantidad de matates.ha⁻¹. (Cuadro 10)

Cuadro 11.Índices de Alternaria, diámetro de cuello y bulbo, coloración de hoja (65ddt) de cuatro variedades de cebollas rojas evaluadas en el CEDEH-FHIA, Comayagua, Honduras

Cultivar	% incidencia de	Ø de cuello	Ø de bulbo	Coloración
	Alternaria			de hoja
Red Burger	34.25 a	1.73 a	5.94 a	3,00 a
Mar Rojo	24.25 b	1.63 a	5.79 a	2,75 a
Red Queem	20.50 b c	1.59 a	5.78 a	2,50 a
Noam 222	15.00 c	1.51 a	5.76 a	2,50 a
CV (%)	25.03	10.18	4.53	17.81
R^2	0.77	0.52	0.44	0.40
P- valor	0.0001	0.3545	0.7673	0.4363

Letras distintas indican diferencias significativas ($p \le 0.05$)

Color: verde oscuro =1 verde verde = 2 verde claro = 3

En el Cuadro 11 se muestran los resultados que se obtuvieron del análisis para evaluar las variables de diámetro de cuello, bulbos y coloración de hojas (65 ddt) el ANAVA muestra que no hay diferencia estadísticamente significativa entre los cultivares (p- valor, 0.7673). Para la variable porcentaje de incidencia de *Alternaria porri* los datos determinan una alta diferencia significativa para los cultivares sometidos a estudio (p- valor 0.0001). La prueba LSD determina que el tratamiento menos afectada por *Alternaria* los obtuvo la variedad Noam 222 con un 15% de incidencia, con mayor daño Reed fue Burger con 34.25% (cuadro 11).

Cuadro 12.Porcentaje de incidencia de *Alternaria porri*, altura y número de hojas (60 ddt) de cebollas amarillas evaluadas en el CEDEH-FHIA, Comayagua, Honduras.

Cultivar	Altura (cm)	Cultivar	No. hojas	Cultivar	% altern
Candy	66.08 a	Cimarrón	7.83 a	Leona	42,50 a
Cimarrón	62.38 a	Candy	7.83 a	Guadalupe	42,50 a
Guadalupe	62.15 a	Altagracia	7.43 a	Cimarrón	35,00 a b
Altagracia	61.98 a	Guadalupe	7.10 a	Altagracia	33,75 a b
Leona	52.98 b	Leona	7.08 a	Candy	30,00 c
SK 110467	30.23 c	SK 110467	4.00 b	SK 110467	22,50 c
CV (%)	8.77	CV (%)	8.55	CV (%)	19.38
R^2	0.91	R^2	0.90	\mathbb{R}^2	0.68
P- valor	0.0001	P- valor	0.0001	P- valor	0.0054

Letras distintas indican diferencias significativas ($p \le 0.05$)

Cuadro 13.Porcentaje de incidencia de *Alternaria porri*, altura y número de hojas (65 ddt) evaluadas en el CEDEH-FHIA, Comayagua, Honduras.

Cultivar	Altura (cm)	Cultivar	No. hojas	Cultivar	% alter
Candy	63.90 a	Candy	8.63 a	Leona	42.50 a
Altagracia	61.68 a	Altagracia	8.20 a b	Guadalupe	42.50 a
Guadalupe	60.65 a b	Cimarron	8.10 a b	Cimarron	35.00 a b
Cimarron	55.35 b c	Guadalupe	7.45 b c	Altagracia	33.75 a b
Leona	51.25 c	Leona	6.58 c	SK 110467	30.00 c
SK 110467	29.30 d	SK 110467	3.70 d	Candy	22.50 c
CV (%)	7.01	CV (%)	9.64	CV (%)	19.38
R^2	0.94	R^2	0.90	R^2	0.68
P- valor	0.0001	P- valor	0.0001	P- valor	0.0054

Letras distintas indican diferencias significativas ($p \le 0.05$)

El ANAVA de altura y número de hojas a los 30 ddt indico diferencias significativas entre los tratamientos (p- valor, <0,0001). El cultivar Candy como el que alcanzo una mayor altura en comparación a los demás materiales evaluados 66,08cm seguido de Cimarrón con 62.38 cm. El cultivar que más rezagado fue SK 110467 con apenas 30.23cm cabe destacar que esta variedad no respondió de la mejor manera ya que su genotipo no está entre los días intermedio fue mejorada para responder al fotoperiodo de días largos así que fue tomada como testigo. Para la variable número de hojas se manifiesta con mayor cantidad Cimarrón

y Candy ambas con 7.83 hojas/planta. Nuevamente la variedad SK 110467 solamente logro acumular 4.0 hojas por planta, Altagracia, Guadalupe, Leona obtuvieron por encima de 7.0 hojas por planta (cuadro 12).

A los 65 ddt el ANAVA detecto con la misma tendencia al cultivar Candy alcanzando la mayor altura con 63.90cm, seguido de Altagracia con 61.68cm que no muestra diferencia significativa con Guadalupe con 60.65 y con menor altura a SK-110467 con 22.30cm. En relación al número de hojas a los 65ddt. La prueba LSD muestra que quien mejor se impone es Candy con el mayor número de hojas (8.63 hojas/planta) obtenidas y con el menor porcentaje de incidencia por daños de *Alternaria porri* con 22.50%. Las variedades Altagracia y Cimarrón no presentan diferencia altamente significativa 8.20 y 8.10 hojas/planta en comparación a Candy. Con mayores incidencias al daño por *Alternaria porri* los presentan Leona y Guadalupe con 42.50 y 42.50% (Cuadro 13). Algunas comparaciones de variedades que han sido evaluadas en otras épocas del año como las variedades, Leona evaluada el 2012 en días cortos (77.2 cm y 9.6 hojas), Altagracia (71.9cm y 9.7 hojas).

En cebollas amarillas el manejo post cosecha es diferente que el de los cultivares rojos ya que su importancia radica en la calidad del bulbo solamente, así que lo que se espera de una variedad amarillas es que no produzca un tallo muy grueso, desde el punto de vista agronómico, no es deseable que un cultivar tenga más de 10 hojas en cebollas amarillas pues está directamente relacionado con el grueso del cuello, y entre más grueso es el tallo del bulbo, mayor tiempo tomará el curado; por el contrario, entre más delgado es el cuello, más rápido el curado. No importa mucho la parte de una buena altura o número de hojas ya que al momento de cosecharlos se realiza la práctica de corte de tallo (descole) para un buen proceso de curado o secado.

5.2 Rendimientos totales en cebollas rojas y amarillas.

Los bulbos fueron cosechados en canastas conteniendo cada canasta 50 bulbos, luego contados para sacar un total y pesados con una balanza graduada en kg, después de esto los resultados de cada tratamiento fueron convertidos a Kg.ha⁻¹ para realizar su respectivo análisis.

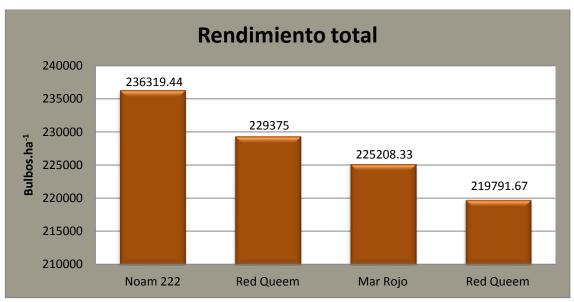


Figura 5. Rendimientos totales en cultivares rojos

Para el rendimiento total (RT) de número de bulbos el ANAVA no presentó diferencias significativas entre los tratamientos (p- valor: 0.3534); sin embargo, para el rendimiento total en peso el ANAVA encontró diferencias altamente significativas (p- valor, 0,0004), en donde sobre salen el cultivares Noam 222 con 52423,61 Kg.ha⁻¹ y Mar Rojo con 42659,72 Kg.ha⁻¹, mientras que los menores rendimientos totales fueron registrados por el cultivar Red Queem con 35576,39 Kg.ha⁻¹ (Figura 5). Conforme a la densidad de siembra que es 266667 plantas .ha⁻¹. Todos los cultivares muestran una producción de bulbos arriba del 80% de la densidad establecida estando perfectamente adaptados a las condiciones ambientales sometidas.

Cuadro 14. Rendimientos totales en 5 cultivares de cebollas amarillas cultivada en el CEDEH -FHIA, Comayagua, Honduras.

Cultivares	RT(Bulbos.ha ⁻¹)	Cultivares	RT(kg.ha ⁻¹)
Cimarron	244861.11 a	Cimarron	32579.17 a
Altagracia	237013.89 a	Altagracia	26325.00 b
Guadalupe	228680.56 a	Candy	23877.08 b
Candy	222777.78 a	Leona	23756.94 b
Leona	218263.89 a	Guadalupe	21458.33 b
CV (%) R ²	7.15	CV (%)	15.02
R^2	0.40	R^2	0.62
P- valor	0.2140	P- valor	0.0139

Letras distintas indican diferencias significativas (p<=0.05)

El ANAVA en los rendimientos totales no presento diferencias significativa entre los tratamientos evaluados, por el contrario el ANAVA que evalúa los pesos de cada uno de los tratamientos presenta diferencias altamente significativas (p-valor, 0.0139), imponiéndose Cimarron con 32579.17 Kg.ha⁻¹. Manejando una densidad de siembra de 266667 plantas.ha⁻¹ estos cultivares alcanzaron una formación de bulbos por encima del 80% de la densidad establecida, la producción de bulbos se considera como muy buena pero los pesos nos indican que estas variedades no presentan una buena ganancia de peso esto puede estar repercutido a que los bulbos formados son de quinta o cuarta clase que no presentan un buen tamaño de los bulbos.

5.3 Rendimientos comerciales de cebollas rojas y amarillas

Al momento de ser cosechados los bulbos fueron recolectados en canastas con 50 bulbos por canasta, en ese momento fueron clasificados los bulbos de interés comercial, luego se contaron para sacar un total y pesaron en una balanza graduada en Kg, los resultados se convirtieron a Kg.ha⁻¹ para su respectivo análisis estadístico.

Cuadro 15. Rendimientos Comerciales de 4 variedades de cebollas rojas evaluadas en el CEDEH-FHIA, Comayagua, Honduras.

Cultivar	F.C	Cultivar R.C		Cultivares	Pod.	
	No.ha ⁻¹		Kg.ha ⁻¹	_	(No.ha ⁻¹)	(%)
Noam 222	234097.22 a	Noam 222	52270.83 a	Red Burger	23611,11 a	6,71
Red Queem	223333.33 a	Mar Rojo	42402.78 b	Red Queem	6041,67 b	1,06
Mar Rojo	221319.44 a	Red Burger	35958.33 c	Mar Rojo	3888,89 b	0,58
Red Burger	196180.56 b	Red Queem	35201.39 c	Noam 222	2222,22 b	0.28
CV (%)	4.87	CV (%)	8.94	CV (%)	62,75	
CV (%) R ²	0.80	R^2	0.86	R^2	0,82	
P- valor	0.0044	P- valor	0.0004	P- valor	0,0015	

Letras distintas indican diferencias significativas ($p \le 0.05$)

Siguiendo los resultados del ANAVA para medir las variables de rendimientos comerciales, presenta diferencia altamente significativa (p – valor: 0.0044) La prueba LSD muestra al hibrido Noam 222 como el que mejores rendimientos comerciales al canso con 234097.22 (bubos comerciales.ha⁻¹) y 52270.83 Kg.ha⁻¹. Por el contrario el que menor cantidad muestra es Reed Burger con apenas 196180.56 bulbos comerciales.ha⁻¹(cuadro 15). El ANAVA para la variable rendimiento de peso marca también diferencia altamente significativa (p- valor, 0.0004) y la prueba LSD muestra que continua la misma tendencia a favor de Noam 222 como mejor peso con 52270.83 Kg.ha⁻¹. Los resultados comerciales de los cultivares se consideran de buenos a muy buenos ya que superan a la media de un productor (35000 Kg.ha⁻¹) en el valle de Comayagua esta asegurara a un productor cubrir los costos de producción y dejar una ganancia esto revela que las variedades se adaptaron perfectamente a las condiciones agroclimáticas del valle de Comayagua.

Cuadro 16. Rendimientos Comerciales de 5 variedades de cebollas amarillas evaluadas en el CEDEH-FHIA, Comayagua, Honduras.

Cultivar	Frutos comerciales	Cultivar	Rendimiento Comercial
	No.ha ⁻¹		Kg.ha ⁻¹
Cimarron	166180.56 a	Cimarron	22590.28 a
Guadalupe	100138.89 b	Leona	10215.28 b
Leona	96736.11 b	Altagracia	9847.22 b
Altagracia	86736.11 b	Candy	9455.56 b
Candy	74166.67 b	Guadalupe	9166.67 b
CV (%)	30.86	CV (%)	29.87
R^2	0.63	R^2	0.77
P- valor	0.0142	P- valor	0.0008

Letras distintas indican diferencias significativas ($p \le 0.05$)

Los resultados que muestra el ANAVA para la variable rendimientos comerciales indican que hay diferencia altamente significativa (p- valor, 0.0142) para cada uno de los cultivares. La prueba LSD muestra como mejor variedad Cimarron con 166180.56 bulbos.ha⁻¹ y los mejores pesos 22590.28 Kg.ha⁻¹. La variedad Candy es la que menor cantidad de bulbos comerciales alcanzo con apenas 74166.67 No.ha⁻¹, pero la que menor peso alcanzo fue Guadalupe con 9166.67 Kg.ha⁻¹ siendo la que después de Cimarron alcanzo mejores resultados con 100138.89 bulbos.ha⁻¹. En el mercado nacional estos rendimientos comerciales equivalen a menos de 1000 bolsas de 50 lb cada una, estos datos muestran que los cultivares no alcanzan un nivel aceptable de rendimientos comerciales no cubren ni si quiera los costos de producción

Cuadro 17. Antecedentes de cebollas amarillas de días con fotoperíodos intermedios evaluadas en el CEDEH-FHIA, Comayagua.

Cultivar	Año	Semillero	Trasplante	Cosecha	RC kg.ha ⁻¹
Guadalupe	2009	10 Mar - 2009	20 Abril - 2009	110 ddt	25,376
	2013	12 Feb - 2013	19 Marzo –2013	80 ddt	9,166
Cimarron	2009	10 Mar - 2009	20 Abril - 2009	115 ddt	35,033
	2013	12 Feb - 2013	19 Marzo –2013	90 ddt	22,590
Candy	2009	20 Mar - 2009	30 Abril - 2009	80 ddt	24,456
-	2013	12 Feb - 2013	19 Marzo –2013	80 ddt	9,455
Altagracia	2011	28 oct - 2011	7 Dic - 2011	115 ddt	64,708.3
_	2013	12 Feb - 2013	19 Marzo –2013	80 ddt	9,166.67
Leona	2011	28 oct - 2011	7 Dic - 2011	115 ddt	55,427.7
	2013	12 Feb - 2013	19 Marzo –2013	80 ddt	10,215.28

Elaboración: propia

5.4 Porcentaje de rechazo

Al momento de medir esta variable se clasificaron los bulbos podridos, doble y daño por insectos, cuando fueron identificados manualmente se contaron y pesaron, mediante una balanza graduada en Kg, los rendimientos se convirtieron a Kg.ha⁻¹, para su análisis estadístico.

Cuadro 18. Porcentajes de descarte, bulbos dobles y podridos en variedades amarillas evaluadas en CEDEH-FHIA, Comayagua, Honduras.

Cultivares	Po	dridos	Cultivar	Dobles		
	(No.ha ⁻¹)	(%)		(No.ha ⁻¹)	(%)	
Altagracia	16477,78	62,09 a	Guadalupe	486,11	1,59 a	
Candy	14359,03	60,98 a	Cimarron	340,28	1,53 a	
Leona	13513,89	57,75 a	Candy	48,61	0,17 b	
Guadalupe	11965,28	56,98 a	Leona	27,78	0,12 b	
Cimarron	9502,78	28,63 b	Altagracia	0,00	0,00 c	
CV (%)	20,24		CV (%)	135,01		
R^2	0,67		\mathbb{R}^2	0,52		
P- valor	0,0088		P- valor	0,0543		

Letras distintas indican diferencias significativas ($p \le 0.05$)

Para medir los porcentajes de rendimientos de bulbos doble, podridos los análisis obtenidos destacan que para la variable bubos podridos muestran diferencia significativa (p-valor, 0,0157) mediante la prueba de medias, Cimarron se presenta como el cultivar con menor número de podridos con un porcentaje de 28.63% y con mayor cantidad a Altagracia con 62.09% (cuadro 19). La variable bulbos dobles, también presenta diferencia altamente significativa (p- valor, 0.0188). La prueba de medias indica que la variedad Cimarron alcanzo 1.59%. Altagracia no presento ninguno. (Cuadro 18). En cuanto al descarte podemos observar que la mayor cantidad es por parte de bulbos podridos, esto está ligado a las condiciones agroclimáticas. Bulbos dobles presento la otra causa de descartes, que está ligado mayormente a características genotípicas de cada cultivar.

5.5 Calidad de Bulbos Rojos y amarillos.

En la determinación de calidad de bulbos rojos, se tomaron 30 bulbos de cada uno de los tratamientos totalmente al azar se pesaron con una balanza gradada en g, luego se les tomo el diámetro de cuello y bulbo haciendo uso de un pie de rey o vernier.

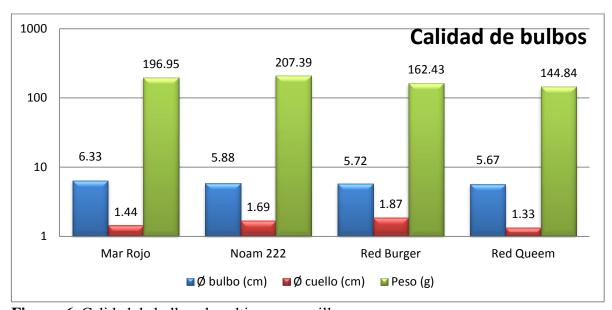


Figura 6. Calidad de bulbos de cultivares amarillos

Para la calidad de bulbos los análisis indican que se tiene diferencia altamente significativa entre los tratamientos (p- valor 0.0001). La prueba de medias muestra los mejores diámetros de bulbos con la variedad Mar Rojo con 6.33 cm y seguidos de Noam 222, Red Burger, Red Queem (Cuadro 20). Los análisis obtenidos para diámetro de cuello muestran a Red Burger con 1.87 cm y para los mejores pesos lo encabeza Noam 222 con 207.39 g y a Red Burger con los menores pesos con 144.84 g (figura 6). Existe una relación entre el desarrollo de la planta y el tamaño de bulbos, pero no siempre se cumple esta aseveración, ya que el desarrollo de bulbos está ligado a factores ambientales y genéticos intrínsecos de cada variedad, y no necesariamente una planta que desarrolle un mayor follaje producirá bulbos de mayor tamaño. Típicamente la cebolla que se produce a altitudes mayores rendirá 80-100 % de bulbos de tamaño jumbo con un buen manejo. Cerca del nivel del mar, la producción de jumbos bajará a unos 40-60 %.

Para clasificar los bulbos de los materiales amarillos, fueron sometidos a una clasificadora, el clasificador manual de cebollas es una unidad sencilla construida de madera. Las clasificadoras de tamaño son barras horizontales (parte inferior de metal con revestimiento plástico) de 1 cm de diámetro, colocados con espacio específico entre las barras. Tamaño 1 (2-2.5 Pg), tamaño 2 (2.5-3 Pg), tamaño 3 (3-3.5 Pg), tamaño 4 (3.5-4 Pg), tamaño 5 (4-4.5pg)

Cuadro 19. Clasificación de bulbos en cebollas amarillas evaluados en CEDEH-FHIA, Comayagua, Honduras.

Cultivares	R.C	Tan 1.	Tam 2.	Tam 3.
	(No.ha ⁻¹)	(%)	(%)	(%)
Cimarron	22590,28 a	36,44 c	56,44 a	7,12 a b
Leona	10215,28 b	56,87 a b	40,80 b	2,33 b
Altagracia	9847,22 b	46,22 b c	50,92 a b	2,86 b
Candy	9455,56 b	39,09 b c	50,42 a b c	10,49 a
Guadalupe	9166,67 b	69,58 a	28,14 c	2,29 b
CV (%)	29,87	25,37	20,92	95,17
R^2	0,77	0,62	0,66	0,45
P- valor	0,0008	0,0162	0,0093	0,1128

Letras distintas indican diferencias significativas ($p \le 0.05$)

Para medir las variables de clasificación de bulbos amarillos se tomaron los Bulbos de tamaño 1 según los resultados del ANAVA los cultivares con mayores porcentajes para esta categoría son Guadalupe, Leona con valores de 69.58 y 56.87 %. Asimismo los cultivares que menor porcentaje para el tamaño 1 son registrados Candy y Cimarron con porcentajes de 39.09 y 36 %. Los mayores rendimientos de Guadalupe y Leona están entre estos diámetros del tamaño 1 (Cuadro 19). Estas clases son las menos deseadas por los productores ya que es la cebolla considerada de menor calidad (pirracha) o en términos económicos la de menor precio pues rinde menos al necesitarse más bulbos para llenar los sacos de 50-52 lb.

Bulbos tamaño 2. Los resultados de ANAVA arrojan los datos siguientes Cimarron, Altagracia, Candy expresando los porcentajes más altos para el tamaño 2, con 56.44, 50.92, 50.42 %. Por el contrario Leona y Guadalupe con 40.80, 28.14 %. La mayoría de los rendimientos de Cimarron y Candy fueron alcanzados por los diámetros dentro del Tamaño 2. (Cuadro 19).

Bulbos tamaño 3. Esta clase según los resultados del ANAVA se ve reflejado que para el tamaño 3 se registra el menor número de la producción de las variedades, Candy presenta el 10.49 % de su producción dentro de estos tamaños que son los mayores, por lo contrario Altagracia, Leona y Guadalupe con apenas 2.86, 2.33, 2.29 %.(Cuadro 19). Es importante indicar que lo ideal es que un cultivar concentre su rendimiento en la producción de bulbos de primera y segunda categoría pues estas reciben un mejor precio de venta y por su tamaño requieren de menos unidades para llenar los sacos de 50 libras donde tradicionalmente se empacan y posteriormente se comercializan

VI. CONCLUSIONES

Los cultivares rojos se comportaron de la mejor manera en cuanto a desempeño y productividad por los rendimientos obtenidos y dando una buena respuesta a las condiciones agroclimáticas del valle de Comayagua

Todos los materiales evaluados presentan pocos o no presentan perdidas por formación de bulbos dobles que en otras épocas es uno de los principales problemas de descarte.

Los cultivares amarillos fueron más susceptibles a las condiciones ambientales del valle de Comayagua presentando las mayores pérdidas.

Los cultivares fueron cosechados 75- 80 ddt ya que las condiciones climáticas que se estaban presentando a finales de junio estaban causando que se creara un medio favorable para la proliferación de hongos y bacterias con exceso de humedad relativa se estaba afectando la calidad de los frutos.

Los mejores cultivares que expresaron un alto potencial productivo y se impusieron a los demás fueron Cimarron por parte de los amarillos con 22590.28 kg.ha⁻¹ y por parte de las rojas Noam 222 con 52270,83 kg.ha⁻¹.

VII. RECOMENDACIONES

Realizar la práctica de emplasticado como una forma reducir la cantidad de maleza que sirve como hospedero de plagas y para mantener la humedad y calor como un ente que controla microorganismo del suelo.

Tener un buen sistema de drenaje que evite que se formen encharcamientos en medio de los surcos donde está establecido el cultivo ya que esto dificulta el manejo, crea un ambiente de humedad que puede producir crecimiento de bacterias y hongos que dañen la calidad de los frutos.

Realizar la investigación en zonas de mayor y menor altitud ya que esta condición agroclimática tiene una influencia marca en el desarrollo de las plántulas y plantas a nivel de invernadero y campo.

Debido a las altas perdidas en los cultivares amarillos se recomienda comenzar a sembrar el semillero en los primeros días de febrero y empezar a sembrar a campo en la primera quincena de Marzo para aprovechar la época de pocas lluvias que se dan en Marzo, Abril, Mayo y principios de Junio.

VIII. BIBLIOGRAFIA

Arias A., Peluffo, S. 2001. Crecimiento y rendimiento de tres cultivares de cebolla (*Allium cepa L*) de diferente ciclo en diferentes localidades y fechas de siembra. Tesis. Facultad de Agronomía. UdelaR. Uruguay.

Brewster, J.L. 1990a. Physiology of crop growth and bulbing. In: Rabinowitch, H.D. and Brewster, J.L. (eds). Onions and Allied Crops, Vol. 1. CRC Press, Boca Raton, Florida, pp. 53–88.

Brewster, J.L. 1994. Onions and other vegetable alliums. Wallingford. CAB. 236p.

Bareiro. J. 2005. Cultivo de la cebolla. (En línea). Consultado el 29 de May del 2013. Disponible en: http://www.lni.unipi.it/stevia/Supplemento/RUR14002.HTM

Brizuela G.2003. Guía técnica para el cultivo de la cebolla. (En línea). Consultado el 25 de May del 2013. Disponible en: http://istphuancane.pe.tripod.com/docs/agrop/cebolla.pdf

Curso de cebolla en Honduras. 2010. (En línea). Consultado el 25 de May del 2013. Disponible en: http://www.freshplaza.es/news_detail.asp?id=36233

Dogliotti. S, Colnago P, Galván G, Aldabe. 2011. Fisiología de la bulbificación y formación del rendimiento en Cebolla. (En línea). Citado el 25 de May del 2013. Disponible

http://www.fagro.edu.uy/~cultivos/Materiales_de_curso/Modulo_hort%EDcola/M%F3dul o_hortalizas_Cebolla.pdf

De Mason, D.A. 1990. Morphology and anatomy of Allium. In: Rabinowitch, H.D. and Brewster, J.L. (eds). Onions and Allied Crops, Vol. 1. CRC Press, Boca Raton, Florida, pp. 27–51.

Federación nacional de cafeteros colombianos. 2000. Cultivo de la cebolla de bulbo. Edición 5. Cali, Colombia, Litocemoa. Pág. 20 - 25.

FHIA (**Fundación Hondureña de Investigación Agrícola**), 2005. Informe Técnico; Programa de hortalizas. 2006. La Lima, Cortes, Honduras. 20 – 53p

Hessayon, D.G. 2000. Manual de horticultura. Editorial Blume. Barcelona. Pág 55 – 65.

Lardizabal R. 2007. Manual de producción de cebolla. (En línea). Consultado el 25 de May del 2013. Disponible en: http://es.scribd.com/doc/59761212/EDA-Manual-Produccion-Cebolla-06-07

Marcia. J 2010. Evaluación de cultivares de cebolla amarillas, blancas y rojas de días cortos en época seca. (En línea). Consultado el 23 de May del 2013.Disponible en: http://www.fhia.org.hn/dowloads/informes_tecnicos/Informe_Tecnico_Hortalizas2010.pdf

Marcia. J. 2012. Evaluación y desempeño en época seca de veinticuatro cultivares de cebolla amarilla, blanca y roja de días cortos. HORT 12-04. (En línea). Consultado el 22 de May del 2013. http://colprocah.com/wp-content/uploads/2013/03/03.-INFORME-TECNICO-2012-PROGRAMA-DE-HORTALIZAS1.pdf

Marcia. J. 2010. Evaluación del comportamiento agronómico del cultivo de cebolla a partir de plántulas producidas bajo condiciones protegidas (invernadero) y a campo abierto, en época seca. (En línea) Consultado el 23 de May del 2013. Disponible en: http://www.fhia.org.hn/dowloads/informes_tecnicos/Informe_Tecnico_Hortalizas2010.pdf

Mercado de cebolla en Honduras. Consultado el 4 de junio del 2013. Disponible en: http://www.fintrac.com/docs/elsalvador/manual_cultivo_cebolla.doc

Muñoz J. 2011. Efecto de la fertilización NPK en el rendimiento de cebolla (Allium cepa) variedad Roja Arequipeña en Guadalupe, La Libertad. (En línea). Consultado el 30 de abr del 2013. Disponible en: http://www.buenastareas.com/ensayos/Proyecto-De-Cebolla/3097152.html

Petit. G 2008. Informe técnico 2008 programa de hortalizas fhia, HOR08-03. Evaluación de tres cintas de riego con tres distanciamientos entre emisores y su efecto en el rendimiento del cultivo de la cebolla. (En línea). Consultado el 12 de May del 2023. Disponible en: http://www.fhia.org.hn/dowloads/informes_tecnicos/it2008hortalizas.pdf

Rothman S; Dondo G. 2007. Cebolla (*allium cepa l.*) (En línea). Consulto el 14 de May del 2013. Disponible en: http://www.fca.uner.edu.ar/academicas/deptos/catedras/horticultura/cebolla.pdf

Valadez. L. 2001. Producción de hortalizas. Editorial Noriega. México. Pág 120 - 126.

IX. ANEXOS

Anexo 1. Bitácora de aplicaciones foliares y al drensh (plaguicidas)

	Cebollo	Variedad: Vor	ictol	Lote/V	drensh (Plaguicid álvula No: <u>#</u> 7	Alea. N. 200
echa de	siembra/trasplant	te: 18/04/13 Tu	cines	Fecha de to	erminación: Tueves	-04-04-13
Fecha	Plaga/enfermedad	Producto aplicado		Total	Nombre del aplicador	Observaciones
1 1 2	1. 1 7.	Koltor	15000	9000	Soul Loren 70	75 1 ts 1/30 Gos todos
9/05/13	Mole 70	Fusilade	15011	12500	- 0	Solo Colles.
, ,			200 %	759~	P.M Y S. Doming	h.
105/13	moso de hiero	Dipel	25000	9361	Accs to	R .
	tups Gusche	Humi Fer	500 (1	18661		
	whicion	Alto	25011	9301		
	Adherente	inex	15000	5401		
		troltor	1900.	19500	Apl- gomuel G.	13 Baylogsos de 15
105/13	Mo Le Zo	Fusilodi	70101	3000	P.M. 45 MOIO GUI	Gostados (1951ts
11	1		15011	7500	Somuel 5	100) to 1/20 Gos too
165/13		Newne (fin	200 gr	100 %		
	Mosa de huevo	Dipel	1159	500 %		
	Oltenorio Admiente	Breut tru	100 11	50 (1		
11	32		0	16-	Lange D	
5/05/13	Gusano	Piochim	90 %	4921	Contingo B.	
1	Alteriorio.			1000		4
	Nythiaon			250 C(-
	Adheren te	Break tru	10011	5000		

Bitácora de aplicaciones foliares y al drensh (Plaguicidas) Lote/Válvula No: Variedad: Vone to Fecha de terminación: Tuccos - 04-07-13 Fecha de siembra/trasplante: 18/04/13 Tucks Nombre del Observaciones Producto aplicado Dosis/barril Total Plaga/enfermedad aplicador Fecha 200 1 ts H20 6 Wilmer O. 350CL 35000 timosex 26/06/13 Alternoria P.M Y S. Dono F. Timmy S. 100€€ 100 66 Breok to Tool olibo Cebello amonillo. 86 CC 750 CL 04676 Protection de Frak 01:09 30CL BICOK TIU 10000 Adherente

Anexo 2. Bitácora de aplicación de fertilizantes

			PRO	GRAMA DE HORTA FHIA/CE		GUA		
cutivo_C	bolla		VARIEDAD Jario			LOTENAL . C		AREA X4 HG
	FECHA DE SIEMBRU			FECHA DE TERM	INACIÓN:	_	RESPONSAB	LE
			6					
FECHA / DIA		NUTRIE	INTES APLICADOS (LIE			FERTILIZACIÓN ORGANIZA	HORAS DE RIEGO	OBSERVACIONES
TEUMTER	MAP	NT. POTASIO	SUL MG	NIT. AMONIO	NIT, CALCIO	Undamed	1000	. 1 2
6/4/13							2,4	_solo 71.090
7/4/13							4 4	_Solo 17.+30
9/4/13							2 4	Market Control of the
18/4/13							1 H	-Solo 7. 130
21/4/13			1.45 12	11				-2016 W. 630
22/4/13 €	16.5 1(10m)	5 165 12mx	1 10> 15 wx	11 onx			5 H	
25/4/13		2 " 8"	12 "	7			2 4	
2/4/13/7	" 15 "	C " D"	15 11	7 11			1 4	
2/4/13/	. 12	2 " 8"	12 4	7			1 11	
27/4/15	. 15 .	C " 0 "	25	7			1 11	
x/4/13							13 H	Marie Constitution of the
9/4/13/2	10	3 " 12 " 1	1 0 2 11	11 "			2 H	
0/4/13/1	11 12 1	2 8	12 "	7 .,			1 1	
15/13						100000	1 1	
15/13		Delivery of the last	and the same				121-15	API 00 1/2 112 de Al
								1 115 d. RA
5/13/	" 12	2 8	15 "	7 11			1 4	
15/13 2	. 10 4	3 " 12 " 1	2 .	10 "			124	
15/13 1	11 32 11	2 - 8 "	12 -	7 .,			1 4	
0/5/13 1	. 12 .	2 . 8 .	12 "	8 .,	JI onv		JEH	
1/5/13							124	
3/5/13/2	10	3 " 12 " 1	4 2 4	11 4			184	LA BELOOB TO

ZMETEL Z

FUNDACIÓN HONDUREÑA DE INVESTIGACIÓN AGRÍCOLA PROGRAMA DE HORTALIZAS-COMAYAGUA FHIA/CEDEH

Cultivo Coholla VARIEDAD VARIEDAD VARIEDAD VARIEDAD VARIEDAD FECHA DE TERMINACIÓN DE FERTILIZANTES

LOTENAL E V 7 AREA Y Ha

FECHA DE SIEMBRA RESPONSABLE

		NUTRS	ENTES APLICADOS (LIE	IRAS)		FERTILIZACIÓN	HORAS DE	OBSERVACIONES
FECHA/DIA	MAP	NT. POTASIO	SUL MG	NIT. AMONIO	NT, CALCIO	ORGANIZA	RIEGO	OBSERVACIONES
6/5/13	1000				I was		5 HS	Afficuson 5 145 de Alela
7/5/13	1 165 4000	3 165 4 ans	12 mm	7 enr	1 165 4 anx		1 H	
8/5/13							142 H	
20/5/13	1 4 14	4 11 14 11	1105 2	12 "	1 11 14 4		2 × H	
1/5/13							2 H	-30/0 71.090
22/5/13	1 " 4"	5 " 4"	12	8 "	1 11 4 "		1 4	
4/5/13	1 " 4"		12 4	8 11	1 " 4"		1 4	
5/5/13							1 4/5	APlicaron 600 a de Arvi
					100			Sport de Dere
7/5/13	1 " 14 ",	4 " 14"	1 . 2 .	12.4	1 " 14 "		1 4	
9/5/13	1 . 4 .	3 4 4 "	12	8 "	1 " 4 "		1 H	
1/5/13	1 " 4"	3 " 12 "	12	8 "	14 11		12 4	
2/6/13							2 4	_50/0 Tiego
16/13	11 14 0	5 11 10 11	1 " 2 "	12 11	1 454		IX H	
16/13			The same of the sa					Aplicación 800 re de Bano
16/13	1 11 4 11	5 11 124	12 "	8 4	14 11		I H	200
16/13	1 1 4 11	5 " 8"	12 11	IL u	1 " 8 "		124	
2/6/13	11 14 4	8 4 4 4	1 4 2 4 1	161 1 1	2 . 4 4		14	
2/6/13	4 4 4	3 " % "	15 "	11 4	1 11 8 4		1× H	CONTRACTOR OF STREET
1643	11 4 11	5 " 8"	12 "	11 4	1 " 8 "		2 H	
7/6/13	11 14 4	8 " 4"	1 " 2 " 1	404	2 11 4 11		1 1	
16/15	4 4 11	5 1811	12	11	I 48 4		1 4	
1/6/13	4 4 4	5 484	15 71	11 -	2 15		1811	
TOTALES						E I CONTRACTOR	12 H	_5010 R:190
IOINCES							- Control	2616 10130

FUNDACIÓN HONDUREÑA DE INVESTIGACIÓN AGRÍCOLA PROGRAMA DE HORTALIZAS-COMAYAGUA

FHIA/CEDEH

	BITACORA DE APLICACION DE FERTI	LIZANTES	1		
OULTINO Cefolla	VARIEDAD Varias	LOTE/VAL #:	07	AREA 14 HQ	
FECHA DE SIEMBRA	FECHA DE TERMINACIÓN		RESPON	SABLE	

		NUTRIENTES APLICADOS (LIBRAS)										FERTILIZACIÓN	HORAS DE	000		
FECHA/DIA	M	AP	N	IT. PO	TASIO	SUL	MG	NIT. A	MONIO		NIT, CA	TCIO	ORGANIZA	RIEGO	Otts	ERVACIONES
24/6/13	1 165	14/00	8	165	York	1 165	Sauk	116%	Lanx	2	165	40nx		124		
27/6/13														1 × × 1 × × × × × × × × × × × × × × × ×	_50/0	11:050
28/6/13	1 4	4 11	5	- 11	8 11		12 11		11 11	1	11	8 11		12 H		
29/6/13														5 M		
1/9/13		10 "	2	15	13 4		6 11		6 "			12 11		1 4		
5/7/13		8 "	5	H	8 "		12 11		8 "					12 H		
7/7/13						100			-					1 4		
8/7/13		4 "	2	19	4 11		6 4.		4 "					1/2 H		
		15										-				
												-				
											-					
		_		-			_			Н						
		_	-	-					_	Н	-					
			-	-	-			-	-	Н	-					
			-	-	-			-		Н						
													100 m (100 m)		125, 11	

Anexo 3. Registro de datos climáticos CEDEH-COMAYAGUA

	Registro de datos climatológicos CEDEH-COMAYAGUA											
feb-13												
D'-	F						ncia ºC	Temperatura	Temperatura		1.1	
Día	Evaporación	Mínima	C) Máxima	Mínima	C) Máxima	Mínima	Digital Máxima	(°c) Cedeh	(ºc) Digital	Diferencia Cedeh-Dig.	Lluvia	Observaciones
1	2.558	17.8	43.3	18.9	32.5	-1.1	10.8	21.0	19.8	1.2	0.00	
2	2.318	15.6	43.3	16.3	32.4	-0.7	10.9	19.0	17.9	1.1	0.00	
3	2.132	17.8	43.3	18.3	31.1	-0.5	12.2	20.0	18.7	1.3	0.00	
4	1.922	16.7	43.3	17.4	31.1	-0.7	12.2	21.0	20.3	0.7	0.00	
5	1.792	15.6	42.2	17.1	33.9	-1.5	8.3	19.0	17.9	1.1	0.00	
6	1.576	15.6	44.4	16.7	33.9	-1.5 -1.1	10.5	20.0	19.3	0.7	0.00	
7	1.254-4.360	14.4	44.4	14.9	34.7	-0.5	9.7	18.0	16.7	1.3	0.00	
8	4.068	13.3	45.6	13.9	33.3	-0.6	12.3	18.0	18.6	-0.6	0.00	
9	3.822	16.7	44.4	18.7	32.7	-2.0	11.7	21.0	20.3	0.7	0.00	
10	3.526	13.3	43.3	14.0	32.8	-0.7	10.5	17.0	16.0	1.0	0.00	
11	3.306	14.4	43.3	14.8	34.3	-0.4	9.0	19.0	17.9	1.1	0.00	
12	3.058	14.4	45.6	14.9	33.6	-0.5	12.0	19.0	18.6	0.4	0.00	
13	2.846	13.3	45.6	13.9	35.3	-0.6	10.3	18.0	17.9	0.1	0.00	
14	2.688	16.7	45.6	16.4	35.0	0.3	10.6	20.0	19.7	0.3	0.00	
15	2.338	18.9	45.6	19.6	33.1	-0.7	12.5	22.0	20.9	1.1	0.00	
16	4.338-2.184	17.8	44.4	18.7	31.9	-0.9	12.5	23.0	22.7	0.3	0.60	
17	4.194	16.7	43.3	18.0	18.4	-1.3	24.9	18.0	18.0	0.0	0.60	
18	4.132	14.4	31.1	15.1	30.6	-0.7	0.5	18.0	16.7	1.3	0.00	
19	3.808	15.6	42.2	16.7	31.5	-1.1	10.7	20.0	20.4	-0.4	0.00	
20	3.662	16.7	43.3	17.1	32.6	-0.4	10.7	21.0	19.9	1.1	0.00	
21	3.454	12.2	45.6	15.2	34.5	-3.0	11.1	19.0	19.4	-0.4	0.00	
22	3.214	13.3	44.4	13.4	35.3	-0.1	9.1	20.0	19.5	0.5	0.00	
23	2.984	13.3	46.7	13.9	34.9	-0.6	11.8	18.0	19.7	-1.7	0.00	
24	2.764	13.3	45.6	13.9	35.4	-0.6	10.2	17.0	15.9	1.1	0.00	
25	2.544	14.4	46.7	16.1	33.9	-1.7	12.8	20.0	19.3	0.7	0.00	
26	2.272	17.8	40.0	17.9	36.4	-0.1	3.6	22.0	21.7	0.3	0.00	
27	1.932	20.0	47.8	20.5	36.3	-0.5	11.5	24.0	23.4	0.6	0.00	
28	1.794	20.0	46.7	20.5	33.5	-0.5	13.2	23.0	22.7	0.3	0.00	

	Registro de datos climatológicos CEDEH-COMAYAGUA											
mar-13												
Día	Evaporación	•	Temperatura Cedeh (°C)		Temperatura Digital		Diferencia ºC Cede-Digital		Temperatura	Diferencia	Lluvia	Observaciones
		Mínima	Máxima	Mínima	Máxima	Mínima	Máxima	(ºc) Cedeh	(°c) Digital	Cedeh-Dig.		
1	1.454	15.6	44.4	16.4	30.7	-0.8	13.7	19	18.4	0.6	0.40	
2	1.306	17.8	42.2	18.1	21.7	-0.3	20.5	20	18.4	1.6	0.00	
3	1.278	13.3	31.1	13.9	23.3	-0.6	7.8	16	15.5	0.5	0.00	
4	1.012-4.360	10.0	35.6	11.4	29.1	-1.4	6.5	16	15.5	0.5	0.00	
5	4.058	13.3	41.1	14.0	33.3	-0.7	7.8	19	18.3	0.7	0.00	
6	3.788	16.7	44.4	17.8	29.1	-1.1	15.3	20	19.3	0.7	0.00	
7	3.586	15.6	41.1	16.3	30.3	-0.7	10.8	20	19.0	1.0	0.00	
8	3.212	13.3	41.1	14.5	31.6	-1.2	9.5	18	17.7	0.3	0.00	
9	3.076	16.7	43.3	17.7	34.4	-1.0	8.9	21	20.7	0.3	0.00	
10	2.718	18.9	45.6	14.5	36.5	4.4	9.1	18	17.1	0.9	0.00	
11	2.426	16.7	45.6	17.5	36.7	-0.8	8.9	21	19.9	1.1	0.00	
12	2.262	18.9	47.8	20.1	31.0	-1.2	16.8	25	23.7	1.3	0.00	
13	2.026	20.0	42.2	20.7	23.9	-0.7	18.3	22	20.9	1.1	0.40	
14	1.986	16.7	35.6	17.5	22.5	-0.8	13.1	20	18.3	1.7	0.00	
15	1.878	15.6	34.4	16.3	25.5	-0.7	8.9	20	19.1	0.9	0.00	
16	1.738	16.7	37.8	17.7	32.1	-1.0	5.7	20	18.9	1.1	0.00	
17	1.492	17.8	43.3	17.9	36.1	-0.1	7.2	20	18.7	1.3	0.00	
18	1.232-4.360	15.6	46.7	16.5	37.6	-0.9	9.1	23	21.6	1.4	0.00	
19	3.966	15.6	45.6	16.7	37.9	-1.1	7.7	22	21.3	0.7	2.40	
20	3.702	18.9	48.9	20.4	35.9	-1.5	13.0	23	22.3	0.7	0.00	
21	3.568	20.0	47.8	21.0	35.5	-1.0	12.3	24	22.7	1.3	0.00	
22	3.204	20.0	46.7	20.3	35.7	-0.3	11.0	24	22.5	1.5	0.00	
23	3.064	18.9	46.7	19.5	34.9	-0.6	11.8	24	22.9	1.1	0.00	
24	2.734	18.9	37.8	19.9	37.1	-1.0	0.7	24	23.1	0.9	0.00	
25	2.452	17.8	42.2	18.3	35.5	-0.5	6.7	23	21.3	1.7	0.00	
26	2.142	22.2	46.7	21.5	29.1	0.7	17.6	26	24.7	1.3	1.00	
27	2.032	20.0	40.0	20.1	25.3	-0.1	14.7	22	20.7	1.3	1.00	
28	1.954	16.7	37.8	17.5	29.7	-0.8	8.1	20	19.0	1.0	0.00	
29	1.748	16.7	41.1	17.9	30.7	-1.2	10.4	21	19.7	1.3	0	
30	1.466	15.6	42.2	16.0	32.9	-0.4	9.3	21	20.6	0.4	0	
31	1.228-4.360	15.6	44.4	16.0	34.5	-0.4	9.9	23	21.3	1.7	0	

	Registro de datos climatológicos CEDEH-COMAYAGUA											
	Mes: Abril 20	13										
Día	Temp a Evaporación Ced		nperatura Temperatura deh (°C) Digital (°C)			Digital	Temperatura	Temperatura	Diferencia	Lluvia	Observaciones	
		Mínima	Máxima	Mínima	Máxima		Máxima			Cedeh-Dig.		
1	4.142	16.7	45.6	16.9	35.9	-0.2	9.7	22	20.9	1	0.00	
2	3.882	17.8	46.7	17.9	36.9	-0.1	9.8	24	22.7	1	0.00	
3	3.592	16.7	47.8	17.0	36.7	-0.3	11.1	23	21.7	1	0.00	
4	3.294	17.8	47.8	18.5	37.1	-0.7	10.7	24	22.5	2	0.00	
5	3.054	20.0	48.9	20.2	32.2	-0.2	16.7	24	22.9	1	1.60	
6	2.778	20.0	44.4	20.3	26.0	-0.3	18.4	23	22.2	1	0.00	
7	2.612	18.9	37.8	19.7	35.5	-0.8	2.3	23	21.7	1	0.00	
8	2.458	17.8	46.7	18.1	35.8	-0.3	10.9	23	21.9	1	0.00	
9	2.112	16.7	46.7	17.9	36.1	-1.2	10.6	22	20.3	2	0.00	
10	1.942	18.9	46.7	19.4	36.5	-0.5	10.2	25	23.7	1	0.00	
11	1.634	20.0	44.4	20.9	33.9	-0.9	10.5	25	24.3	1	0.00	
12	1.334	17.8	45.6	18.9	37.8	-1.1	7.8	23	21.6	1	66.80	
13	3.564	20.0	38.9	20.3	34.8	-0.3	4.1	24	23.5	1	0.00	
14	3.358	21.1	46.7	21.8	36.6	-0.7	10.1	25	24.4	1	0.00	
15	3.082	20.0	47.8	20.7	36.2	-0.7	11.6	25	23.9	1	0.00	
16	2.858	20.0	47.8	20.5	36.3	-0.5	11.5	25	23.3	2	0.00	
17	2.654	20.0	47.8	20.4	36.3	-0.4	11.5	24	23.2	1	0.00	
18	2.312	18.9	47.8	19.7	35.7	-0.8	12.1	23	22.4	1	0.00	
19	2.162	20.0	46.7	21.1	36.9	-1.1	9.8	25	23.9	1	0.00	
20	1.982	21.1	47.8	21.5	33.9	-0.4	13.9	25	23.3	2	0.00	
21	1.788	21.1	45.6	22.1	33.4	-1.0	12.2	24	22.9	1	0.00	
22	1.568	21.1	44.4	21.9	35.3	-0.8	9.1	24	23.5	1	0.00	
23	1.296-4.360	21.1	46.7	21.1	35.5	0.0	11.2	25	23.7	1	0.00	
24	4.058	18.9	46.7	19.7	36.1	-0.8	10.6	24	23	1	0.60	
25	3.888	21.1	46.7	21.5	33.5	-0.4	13.2	26	24.8	1	1.20	
26	3.616	20.0	44.4	20.9	33.1	-0.9	11.3	24	23.7	0	0.00	
27	3.472	18.9	44.4	19.5	34.3	-0.6	10.1	24	23.10	1	0.00	
28	3.102	16.7	45.6	17.5	35.2	-0.8	10.4	21	19.90	1	33.60	
29	4.114	20.0	45.6	20.1	32.5	-0.1	13.1	25	23.1	2	0.00	
30	3.998	20.0	43.3	21.1	32.5	-1.1	10.8	24	23.4	1	0.00	

	Registro de datos climatológicos CEDEH-COMAYAGUA											
	Mes: mayo 2	013										
Día	Evaporación	Tempe Cede		•	eratura al (ºC)		ncia ºC Digital	Temperatura (°c) Cedeh	Temperatura	Diferencia	Lluvia	Observaciones
		Mínima	Máxima	Mínima	Máxima	Mínima	Máxima	(°C) Ceden	(°c) Digital	Cedeh-Dig.		
1	3.634	20.0	42.2	20.9	33.7	-0.9	8.5	25	24.3	1	0.00	
2	3.35	22.2	43.3	22.4	34.7	-0.2	8.6	26	25	1	32.20	
3	4.36	18.9	45.6	19.2	29.8	-0.3	15.8	22	21.1	1	0.00	
4	4.122	20.0	41.1	30.3	30.0	-10.3	11.1	23	21.7	1	0.00	
5	3.852	16.7	41.1	17.1	33.4	-0.4	7.7	22	21.5	1	0.00	
6	3.776	20.0	44.4	21.1	31.9	-1.1	12.5	23	22.4	1	0.00	
7	3.584	21.1	43.3	21.4	34.0	-0.3	9.3	24	23.5	1	0.00	
8	3.242	21.1	44.4	21.3	33.5	-0.2	10.9	24	23.1	1	0.00	
9	3.004	18.9	44.4	20.3	35.4	-1.4	9.0	24	22.9	1	0.00	
10	2.868	21.1	45.6	22.2	36.7	-1.1	8.9	25	24.5	1	0.00	
11	2.524	20.0	46.7	20.9	36.5	-0.9	10.2	25	24.3	1	0.00	
12	2.308	21.1	46.7	22.1	36.0	-1.0	10.7	26	25.1	1	0.00	
13	2.166	20.0	46.7	21.7	33.7	-1.7	13.0	26	24.8	1	0.00	
14	1.832	20.0	45.6	20.5	32.3	-0.5	13.3	24	22.8	1	0.00	
15	1.604	18.9	43.3	20.7	32.9	-1.8	10.4	24	23.2	1	0.00	
16	1.342-4.360	18.9	44.4	19.3	34.9	-0.4	9.5	24	22.8	1	0.00	
17	4.132	18.9	45.6	19.8	35.5	-0.9	10.1	23	22.1	1	0.00	
18	3.912	21.1	46.7	22.2	34.9	-1.1	11.8	25	23.6	1	0.00	
19	3.734	18.9	45.6	19.9	36.6	-1.0	9.0	24	23.1	1	0.00	
20	3.536	20.0	47.8	21.3	36.6	-1.3	11.2	26	24.9	1	0.00	
21	3.204	21.1	47.8	21.1	35.7	0.0	12.1	26	24.5	2	0.00	
22	3.088	20.0	45.6	20.8	33.7	-0.8	11.9	25	24.1	1	0.00	
23	2.732	18.9	42.2	19.7	34.2	-0.8	8.0	24	23.3	1	1.40	
24	2.758-4.360	18.9	43.3	19.4	34.7	-0.5	8.6	23	22.5	1	3.20	
25	4.272	20.0	46.7	20.3	33.8	-0.3	12.9	25	23.9	1	0.00	
26	4.026	20.0	44.4	21.0	32.7	-1.0	11.7	25	24.2	1	3.20	
27	4.026	20.0	43.3	20.7	30.5	-0.7	12.8	23	21.9	1	17.80	
28	4.360	18.9	42.2	19.9	31.1	-1.0	11.1	24	22.70	1	7.60	
29	4.360	20.0	42.2	20.1	30.8	-0.1	11.4	24	22.80	1	8.80	
30	4.360	20.0	42.2	20.5	32.5	-0.5	9.7	23	22.1	1	0.00	
31	4.196	20	43.3333	21.1	32.7	-1.1	10.6	25	24.3	1	0.6	

Anexo 4. Resumen de ANAVA del experimento

Análisis de la varianza

<u>Variable</u>	N	R ²	R² Aj	$\overline{\text{CV}}$	
No. Rend tota	l.ha	16	0,56	0,27	5,52

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	Cl	M	F	p-valo	<u>or</u>
Model	lo 1802237	654,32	6	3003	72942,3	39 1,90	0,1848
Tra	5833912	03,70	3	1944	63734,5	57 1,23	0,3534
Bloq	12188464	50,62	3	4062	82150,2	21 2,58	0,1186
Error	14191936	572,84	9	1576	88185,8	87	
<u>Total</u>	32214313	327,16	15				

Test:LSD Fisher Alfa=0,05 DMS=20086,63777

Error: 157688185,8711 gl: 9

Tra	Medias	n	<u>E.E.</u>	
Noam 222	236319,44	4	6278,70	A
Red Queem	229375,00	4	6278,70	A
Mar Rojo	225208,33	4	6278,70	A
Red Burger	219791,67	4	6278,70	A

Letras distintas indican diferencias significativas $(p \le 0.05)$

Variable	N	R ²	R ² Aj	CV
kg.ha total	16	0,86	0,77	8,26

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM		F	p-valor	
Modelo	O	677605613,43	6	112934	1268,90	9,24	0,0020
Tra	649053	3771,22 3	216351	257,07	17,71	0,0004	

Bloq 28551842,21 3 9517280,74 0,78 0,5347 Error 109951437,11 9 12216826,35 Total 787557050,5415

Test:LSD Fisher Alfa=0,05 DMS=5590,96624

Error: 12216826,3460 gl: 9

<u>Tra</u>	Medias	n	E.E.		_	
Noam 222	52423,61	4	1747,63	A		
Mar Rojo	42659,72	4	1747,63		В	
Red Burger	38500,00	4	1747,63		В	C
Red Queem	35576,39	4	1747,63			C

Letras distintas indican diferencias significativas $(p \le 0.05)$

Variable	N	R²	R² Aj	CV	
No. com tota	l.ha	16	0,80	0,67	4,87

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl		CM	F	p-valo	<u>-</u>		
Model	lo 405	3809799	,38	6	6756	34966,50	5	5,96	0,0091
Tra	309009934	4,14	3	10300	033114,	71	9,09	0,0044	4
Bloq	96371045	5,25	3	3212	36818,4	42	2,84	0,0984	4
Error	101964216	58,21	9	1132	93574,2	25			
<u>Total</u>	507345196	57,59	15						

Test:LSD Fisher Alfa=0,05 DMS=17025,90903

Error: 113293574,2455 gl: 9

<u>Tra</u>	Medias	n	E.E.		
Noam 222	234097,22	4	5321,97	A	
Red Queem	223333,33	4	5321,97	A	
Mar Rojo	221319,44	4	5321,97	A	
Red Burger	196180,56	4	5321,97		В
_					

Letras distintas indican diferencias significativas($p \le 0.05$)

<u>Variable</u>	N	R ²	R² Aj	$\overline{\text{CV}}$
kg.ha com	16	0,86	0,77	8,94

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC		gl	CM		F	p-valor	
Model	O	772698	688,27	6	128783	3114,71	9,38	0,0019
Tra	748805	5941,36	3 2	249601	1980,45	18,18	0,0004	
Bloq	23892	746,91	3	79642	248,97	0,58	0,6428	
Error	123597	7608,02	9	13733	067,56			
Total	896296	5296,30	15					

Test:LSD Fisher Alfa=0,05 DMS=5927,77141

Error: 13733067,5583 gl: 9

<u>Tra</u>	Medias	n	E.E.			
Noam 222	52270,83	4	1852,91	A		
Mar Rojo	42402,78	4	1852,91		В	
Red Burger	35958,33	4	1852,91			C
Red Queem	35201,39	4	1852,91			C

Variable	N	R ²	R ² Aj	CV
No. Pod	16	0,82	0,69	62,75

F.V.	SC	gl		CM	F	p-valo	<u>r</u>	
Model	О	12545042	43,83	6	209	084040,64	6,64	0,0064
Tra	117713	6381,17	3	392	378793	,72 12,46	0,0015	
Bloq	77367	862,65 3	25	5789287,	55 0,8	2 0,5152	2	
Error	283338	3155,86	9	314	182017,	,32		
<u>Total</u>	153784	2399,69	15					

Test:LSD Fisher Alfa=0,05 DMS=8975,09277

Error: 31482017,3182 gl: 9

Tra	Medias	n	E.E.		
Red Burger	23611,11	4	2805,44	A	
Red Queem	6041,67	4	2805,44		В
Mar Rojo	3888,89	4	2805,44		В
Noam 222	2222,22	4	2805,44		В
·					

Letras distintas indican diferencias significativas $(p \le 0.05)$

Variable	N	R ²	R ² Aj	CV
Kg. Pod	16	0,85	0,74	70,21

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC		gl	CN	1	F	p-valor	• <u>=</u>
Model	О	16736	786,27	6	27894	64,38	8,18	0,0031
Tra	156953	360,73	3	52317	786,91	15,35	0,0007	7
Bloq	10414	25,54	3	3471	41,85	1,02	0,4290)
Error	30679	49,46	9	3408	83,27			
<u>Total</u>	19804	735,73	15				<u>-</u> -	

Test:LSD Fisher Alfa=0,05 DMS=933,92180

Error: 340883,2733 gl: 9

<u>Tra</u>	Medias	n	E.E.	
Red Burger	2541,67	4	291,93 A	
Red Queem	375,00	4	291,93	В
Mar Rojo	256,94	4	291,93	В
Noam 222	152,78	4	291,93	В

Variable	N	R ²	R ² Aj	CV
% Rend. Cor	n 16	0,83	0,72	1,66

F.V.	SC	gl	CM	F	p-valor	
Model	О	119,01	6	19,83	7,54	0,0041
Tra	111,85	3	37,28	14,18	0,0009	
Bloq	7,16	3	2,39	0,91	0,4751	
Error	23,67	9	2,63			
<u>Total</u>	142,67	15				

Test:LSD Fisher Alfa=0,05 DMS=2,59400

Error: 2,6298 gl: 9

Tra	Mediasn	E.E.		
Noam 222	99,72 4	0,81	A	
Mar Rojo	99,42 4	0,81	A	
Red Queem	98,94 4	0,81	A	
Red Burger	93,29 4	0,81		E

Red Burger 93,29 4 0,81 B Letras distintas indican diferencias significativas ($p \le 0,05$)

Variable	N	\mathbb{R}^2	R ² Aj	CV
% Pod	16	0,83	0,72	75,17

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	,
Model	o 119,0)1	6	19,83	7,54	0,0041
Tra	111,83	5 3	37,28	14,18	0,0009	1
Bloq	7,16	3	2,39	0,91	0,4751	
Error	23,67	9	2,63			
Total	142,6	7 15				

Test:LSD Fisher Alfa=0,05 DMS=2,59400

Error: 2,6298 gl: 9

<u>Tra</u>	Medias	n	E.E.		
Red Burger	6,71	4	0,81	A	
Red Queem	1,06	4	0,81		В
Mar Rojo	0,58	4	0,81		В
Noam 222	0,28	4	0,81		В

ANAVA variables calidad de bulbos a la cosecha

E:\Cosecha de cebolla lote 7.xls: 29/08/2013 - 15:30:44

Análisis de la varianza

Variable	N	R ²	R ² Aj	CV
Ø bulbo	480	0.11	0,10	14.59

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Model	О	43,85	6	7,31	9,86 <0,0001
Trata	32,75	3	10,92	14,73	<0,0001
Rep	11,10	3	3,70	4,99	0,0020
Error	350,55	473	0,74		
Total	394,40	479			

Test:LSD Fisher Alfa=0,05 DMS=0,21839

Error: 0,7411 gl: 473

Trata	Media	sn	E.E.		
Mar Rojo	6,33	120	0,08	A	
Noam 222	5,88	120	0,08		В
Red Burger	5,72	120	0,08		В
Red Queen	5,67	120	0,08		В

Letras distintas indican diferencias significativas($p \le 0.05$)

<u>Variable</u>	N	R²	R ² Ai	CV
Ø cuello	480	0,06	0,05	61,97

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	-
Model	О	28,97	6	4,83	5,03	0,0001
Trata	21,57	3	7,19	7,49	0,0001	
Rep	7,41	3	2,47	2,57	0,0535	,
Error	453,95	473	0,96			
<u>Total</u>	482,92	479				

Test:LSD Fisher Alfa=0,05 DMS=0,24852

Error: 0,9597 gl: 473

<u>Trata</u>	Mediasn	<u>E.E.</u>		
Red Burger	1,87 120	0,09	A	
Noam 222	1,69 120	0,09	A	
Mar Rojo	1,44 120	0,09		В
Red Queen	1,33 120	0,09		В

Variable	N	R ²	R² Ai	CV
----------	---	----------------	-------	----

Peso g 480 0,17 0,15 32,87

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Model	o 3205°	78,20	6 5342	29,70	15,63 < 0,0001
Trata	307798,79	3	102599,60	30,01	<0,0001
Rep	12779,41	3	4259,80	1,25	0,2924
Error	1616984,20	473	3418,57		
Total	1937562,40	479			

Test:LSD Fisher Alfa=0,05 DMS=14,83226

Error: 3418,5713 gl: 473

Trata	Mediasn	E.E.			
Noam 222	207,39 120	5,34	A		
Mar Rojo	196,95 120	5,34	A		
Red Burger	162,43 120	5,34		В	
Red Queen	144,84 120	5,34			(

Letras distintas indican diferencias significativas(p <= 0.05)

ANAVA cv cebolla amarilla

var. cebolla lote 7.xls: 06/08/2013 - 15:25:14

Análisis de la varianza

Variable	N	R ²	R² Aj	CV	
No.ren total/	'ha	20	0,40	0,05	7,15

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	I F	p-valor	• <u>-</u>
Modelo	216940200	6,17	7	309914572,3	31 1,14	0,3994
Tratamiento	184469907	4,07	4	461174768,5	52 1,70	0,2140
Bloque	324702932	2,10	3	108234310,7	700,40	0,7560
Error	325224537	0,37	12	271020447,5	53	
Total	542164737	6,54	19			

Test:LSD Fisher Alfa=0,05 DMS=25363,30907

Error: 271020447,5309 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	244861,11	4	8231,35	A	
Altagracia	237013,89	4	8231,35	A	В
Guadalupe	228680,56	4	8231,35	A	В
Candy	222777,78	4	8231,35	A	В
Leona	218263,89	4	8231,35		В

Variable	N	R ²	R ² Aj	CV
kg.ren total/h	na 20	0,62	0,40	15,02

<u>F.V.</u>	SC g	gl CM	F	p-valor
Modelo	293745795,91	7 41963685,1	3 2,84	0,0541
Tratamiento	291012353,40	4 72753088,3	5 4,92	0,0139
Bloque	2733442,52	3 911147,51	0,06	0,9790
Error	177390097,221	14782508,1	0	
Total	471135893,131	19		

Test:LSD Fisher Alfa=0,05 DMS=5923,50757

Error: 14782508,1019 gl: 12

Tratamiento	Medias	n	E.E.	
Cimarron	32579,17	4	1922,40	A
Altagracia	26325,00	4	1922,40	В
Candy	23877,08	4	1922,40	В
Leona	23756,94	4	1922,40	В
Guadalupe	21458,33	4	1922,40	В

Letras distintas indican diferencias significativas($p \le 0.05$)

<u>Variable</u>	N	R ²	R² Aj	CV	
No./ha come	rcial	20	0,63	0,42	30,86

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM		F	p-valor	_	
Modelo	21588692129	,63	7	308409	8875	,66	2,95	0,0482
Tratamiento	20476118827	,16	4	511902	29706	,79	4,89	0,0142
Bloque	1112573302,	47	3	37085	7767,	49	0,35	0,7868
Error	12551720679	,01 1	2	104597	76723	,25		
Total	34140412808	,64 1	9					_

Test:LSD Fisher Alfa=0,05 DMS=49827,13252

Error: 1045976723,2510 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	166180,56	4	16170,78	Α	
Guadalupe	100138,89	4	16170,78		В
Leona	96736,11	4	16170,78		В
Altagracia	86736,11	4	16170,78		В
Candy	74166,67	4	16170,78		В

Variable	N	\mathbb{R}^2	R ² Aj	CV	
kg/ha comei	rcial	20	0,77	0,64	29,87

<u>F.V.</u>	SC gl	CM F	p-valor
Modelo	551406601,85 7	78772371,69 5,88	0,0039
Tratamiento	536602077,16 4	134150519,29 10,01	0,0008
Bloque	14804524,69 3	4934841,56 0,37	0,7773
Error	160799194,4412	13399932,87	
Total	712205796,3019		

Test:LSD Fisher Alfa=0,05 DMS=5639,70251

Error: 13399932,8704 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	22590,28	4	1830,30	A	
Leona	10215,28	4	1830,30		В
Altagracia	9847,22	4	1830,30		В
Candy	9455,56	4	1830,30		В
Guadalupe	9166,67	4	1830,30		В

Letras distintas indican diferencias significativas $(p \le 0.05)$

<u>Variable</u>	N	R ²	R² Aj	CV	
No./ha podri	idos	20	0,67	0,48	20,24
Cuadro de A	nálisis	de la Va	arianza (S	SC tipo	III)

F.V.	SC §	gl (CM F	p-valor	_	
Modelo	15349749228,4	0 7	21928213	18,34	3,46	0,0289
Tratamiento	14235354938,2	.7 4	35588387	34,57	5,61	0,0088
Bloque	1114394290,12	2 3	37146476	53,37	0,59	0,6358
Error	7611280864,20	0 12	63427340	05,35		

19

Test:LSD Fisher Alfa=0,05 DMS=38801,01942

22961030092,59

Error: 634273405,3498 gl: 12

Tratamiento	Medias	n	E.E.		
Altagracia	150277,78	4	12592,39	Α	
Candy	148333,33	4	12592,39	Α	
Guadalupe	125902,78	4	12592,39	Α	
Leona	121388,89	4	12592,39	Α	
Cimarron	76388,89	4	12592,39		В

Variable	N	R ²	R² Aj	CV	
kg/ha podrid	os	20	0,48	0,18	24,96

<u>F.V.</u>	SC gl	CM	F	p-valor
Modelo	120576328,32 7	17225189,76	1,60	0,2274
Tratamiento	109492478,40 4	27373119,60	2,54	0,0949
Bloque	11083849,92 3	3694616,64	0,34	0,7952
Error	129506225,31 12	10792185,44		
Total	250082553,63 19			

Test:LSD Fisher Alfa=0,05 DMS=5061,27092

Error: 10792185,4424 gl: 12

Tratamiento	Medias	n	E.E.		
Altagracia	16477,78	4	1642,57	A	
Candy	14359,03	4	1642,57	A	В
Leona	13513,89	4	1642,57	A	В
Guadalupe	11965,28	4	1642,57	A	В
Cimarron	9502,78	4	1642,57		В

Letras distintas indican diferencias significativas($p \le 0.05$)

Variable	N	R ²	R ² Aj	CV
No./ha dobles	$3\overline{20}$	0,52	0,24	135,01

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	26878858,02	7	3839836,86	1,84	0,1683
Tratamiento	26373456,79	4	6593364,20	3,16	0,0543
Bloque	505401,23	3	168467,08	0,08	0,9692
Error	25015432,10	12	2084619,34		
Total	51894290,12	19			

Test:LSD Fisher Alfa=0,05 DMS=2224,42756

Error: 2084619,3416 gl: 12

Tratamiento	Medias	n	E.E.		
Guadalupe	2638,89	4	721,91 A		
Cimarron	2291,67	4	721,91 A	В	
Candy	277,78	4	721,91	В	C
Leona	138,89	4	721,91	В	C
Altagracia	0,00 4	721,9	91	C	

Variable	N	R²	R ² Aj	CV
kg/ha dobles	20	0,63	0,41	116,21

<u>F.V.</u>	SC	gl	CM	F	p-valor
Modelo	887577,16	7	126796,74	2,88	0,0518
Tratamiento	768904,32	4	192226,08	4,37	0,0208
Bloque	118672,84	3	39557,61	0,90	0,4703
Error	528317,90	12	44026,49		
Total	1415895,06	19			

Test:LSD Fisher Alfa=0,05 DMS=323,26741

Error: 44026,4918 gl: 12

Tratamiento	Mediasn	E.E.				
Cimarron	486,11 4	104,91 A				
Guadalupe	340,28 4	104,91 A	В			
Candy	48,61 4	104,91	В	C		
Leona	27,78 4	104,91	В	C		
Altagracia	0,00 4	104,91		C		
Letras distintas indican diferencias significativas($p <= 0.05$)						
	v					

<u>Variable</u>	N	R ²	R ² Aj	CV	
No./ha desca	rte	20	0,54	0,28	127,89

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	36695447,53	7	5242206,79	2,05	0,1310
Tratamiento	35653163,58	4	8913290,90	3,49	0,0413
Bloque	1042283,95	3	347427,98	0,14	0,9367
Error	30665663,58	12	2555471,97		
Total	67361111,11	19			

Test:LSD Fisher Alfa=0,05 DMS=2462,86408

Error: 2555471,9650 gl: 12

Tratamiento	Medias	n	E.E.		
Guadalupe	2979,17	4	799,29 A		
Cimarron	2777,78	4	799,29 A	В	
Candy	326,39	4	799,29	В	C
Leona	166,67	4	799,29		C
Altagracia	0,00 4	799,2	.9	C	

Variable	N	R ²	R ² Aj	CV
kg/ha descart	e 20	0,46	0,14	23,94

<u>F.V.</u>	SC gl	CM	F	p-valor
Modelo	103264545,91 7	14752077,99	1,44	0,2744
Tratamiento	93539507,72 4	23384876,93	2,29	0,1196
Bloque	9725038,19 3	3241679,40	0,32	0,8125
Error	122514998,4612	10209583,20		
Total	225779544,37 19			

Test:LSD Fisher Alfa=0,05 DMS=4922,76259

Error: 10209583,2047 gl: 12

Tratamiento	Medias	n	E.E.		
Altagracia	16477,78	4	1597,62	A	
Candy	14421,53	4	1597,62	A	В
Leona	13541,67	4	1597,62	A	В
Guadalupe	12291,67	4	1597,62	A	В
Cimarron	9988,89	4	1597,62		В

Letras distintas indican diferencias significativas($p \le 0.05$)

Variable	N	R ²	R² Aj	CV
No./ha T1	20	0,40	0,06	42,28

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl (CM	F t	o-valor	
Modelo	6289799382,7	72 7	898542	2768,96	1,16	0,3890
Tratamiento	5376080246,9	91 4	134402	0061,73	1,74	0,2054
Bloque	913719135,8	0 3	304573	3045,27	0,39	0,7591
Error	9257037037,0)4 12	771419	753,09		
Total	15546836419,	75 19				

Test:LSD Fisher Alfa=0,05 DMS=42790,78587

Error: 771419753,0864 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	84027,78	4	13887,22	A	
Guadalupe	81250,00	4	13887,22	A	В
Leona	67777,78	4	13887,22	A	В
Altagracia	55277,78	4	13887,22	A	В
Candy	40138,89	4	13887,22		В

Variable	N	R ²	R ² Aj	CV
kg/ha T1	20	0,43	0,10	42,92

<u>F.V.</u>	SC	gl	CM	F	p-valor
Modelo	54052893,52	7	7721841,93	1,31	0,3227
Tratamiento	46300925,93	4	11575231,48	1,97	0,1633
Bloque	7751967,59	3	2583989,20	0,44	0,7286
Error	70476234,57	12	5873019,55		
Total	124529128,09	19			

Test:LSD Fisher Alfa=0,05 DMS=3733,66723

Error: 5873019,5473 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	8187,50	4	1211,72	A	
Guadalupe	6090,28	4	1211,72	A	В
Leona	5645,83	4	1211,72	A	В
Altagracia	4631,94	4	1211,72	A	В
Candy	3673,61	4	1211,72		В

Letras distintas indican diferencias significativas $(p \le 0.05)$

Variable	N	R ²	R² Aj	CV
No./ha T2	20	0,79	0,67	36,89

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM		F	p-valor	• <u>-</u>	
Modelo	8296242283,	95 7	11	18517	7469,	14	6,54	0,0025
Tratamiento	8172322530,	86 4	20)43080	0632,	72	11,27	0,0005
Bloque	123919753,0)9 3	4	11306	584,36	5 0,23	0,8753	3
Error	2176041666,	67 12	2 1	81336	805,5	6		
Total	10472283950	,62 19)					_

Test:LSD Fisher Alfa=0,05 DMS=20746,64450

Error: 181336805,5556 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	75902,78	4	6733,07	A	
Altagracia	30486,11	4	6733,07		В
Candy	30138,89	4	6733,07		В
Leona	27916,67	4	6733,07		В
Guadalupe	18055,56	4	6733,07		В

Variable	N	R ²	R² Ai	CV
Kg/ha T2	20	0,80	0,68	38,82

<u>F.V.</u>	SC gl	CM	F	p-valor
Modelo	248308631,17 7	35472661,60	6,70	0,0022
Tratamiento	244155256,17 4	61038814,04	11,54	0,0004
Bloque	4153375,00 3	1384458,33	0,26	0,8517
Error	63498916,67 12	5291576,39		
Total	311807547,8419			

Test:LSD Fisher Alfa=0,05 DMS=3544,03025

Error: 5291576,3889 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	12756,94	4	1150,17	A	
Altagracia	4951,39	4	1150,17		В
Candy	4747,22	4	1150,17		В
Leona	4326,39	4	1150,17		В
Guadalupe	2847,22	4	1150,17		В

Letras distintas indican diferencias significativas($p \le 0.05$)

Variable	N	R ²	R ² Aj	CV
No./ha T3	20	0,50	0,20	114,27

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	103607253,09	7	14801036,1	6 1,68	0,2049
Tratamiento	92731481,48	4	23182870,3	7 2,63	0,0869
Bloque	10875771,60	3	3625257,20	0,41	0,7477
Error	105694444,44	112	8807870,37	7	
Total	209301697,53	3 19			

Test:LSD Fisher Alfa=0,05 DMS=4572,35921

Error: 8807870,3704 gl: 12

Tratamiento	Medias	n	E.E.		
Cimarron	6250,00	4	1483,90	A	
Candy	3888,89	4	1483,90	A	В
Leona	1041,67	4	1483,90		В
Altagracia	972,22	4	1483,90		В
Guadalupe	833,33	4	1483,90		В

Variable	N	R ²	R ² Aj	CV
Kg/ha T3	20	0,49	0,19	117,28

<u>F.V.</u>	SC	gl	CM	F	p-valor
Modelo	7421913,58	7	1060273,37	1,65	0,2125
Tratamiento	6503703,70	4	1625925,93	2,53	0,0953
Bloque	918209,88	3	306069,96	0,48	0,7044
Error	7706790,12	12	642232,51		
Total	15128703,70	19			

Test:LSD Fisher Alfa=0,05 DMS=1234,67038

Error: 642232,5103 gl: 12

Tratamiento	Medias	n	E.E.	
Cimarron	1645,83	4	400,70 A	
Candy	1034,72	4	400,70 A	В
Altagracia	263,89	4	400,70	В
Leona	243,06	4	400,70	В
Guadalupe	229,17	4	400,70	В

Letras distintas indican diferencias significativas $(p \le 0.05)$

<u>Variable</u>	N	R ²	R² Aj	CV	
% rend come	ercial	20	0,62	0,40	27,08

Cuadro de Análisis de la Varianza (SC tipo III)

_F.V.	SC gl	CM	F p-val	or
Modelo	3038,65	7	434,09 2,79	0,0568
Tratamiento	2871,46	4	717,87 4,62	0,0173
Bloque	167,19	3	55,73 0,36	0,7839
Error	1864,68	12	155,39	
Total	4903,34	19		

Test:LSD Fisher Alfa=0,05 DMS=19,20512

Error: 155,3904 gl: 12

Tratamiento	Mediasn	E.E.		
Cimarron	69,78 4	6,23	A	
Leona	42,13 4	6,23		В
Guadalupe	41,57 4	6,23		В
Candy	38,78 4	6,23		В
Altagracia	37,91 4	6,23		В

Variable	N	R ²	R ² Aj	CV
% podridos	20	0,63	0,41	24,00

F.V.	SC gl	CM	F p-val	<u>lor</u>
Modelo	3307,98	7	472,57 2,89	0,0513
Tratamiento	3112,81	4	778,204,76	0,0157
Bloque	195,17	3	65,06 0,40	0,7571
Error	1962,89	12	163,57	
Total	5270,87	19		

Test:LSD Fisher Alfa=0,05 DMS=19,70434

Error: 163,5738 gl: 12

Tratamiento	Mediasn	E.E.		
Altagracia	62,09 4	6,39	A	
Candy	60,98 4	6,39	A	
Leona	57,75 4	6,39	A	
Guadalupe	56,98 4	6,39	A	
Cimarron	28,63 4	6,39]

Letras distintas indican diferencias significativas ($p \le 0.05$)

Variable	N	R ²	R ² Aj	CV
% dobles	20	0,64	0,44	111,35

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Modelo	12,49	7	1,78	3,11	0,0406
Tratamiento	10,32	4	2,58	4,50	0,0188
Bloque	2,17	3	0,72	1,26	0,3312
Error	6,87	12	0,57		
Total	19,36	19			

Test:LSD Fisher Alfa=0,05 DMS=1,16608

Error: 0,5729 gl: 12

Tratamiento	Mediasn	E.E.		
Cimarron	1,59 4	0,38	A	
Guadalupe	1,53 4	0,38	A	
Candy	0,17 4	0,38		В
Leona	0,12 4	0,38		В
Altagracia	0,00 4	0,38		В

Variable	N	\mathbb{R}^2	R ² Aj	CV
% tam 1	20	0.62	0.40	25.37

F.V.	SC gl	CM F	p-valor
Modelo	3082,00	7 44	0,29 2,78 0,0578
Tratamiento	2988,22	4 74	7,06 4,71 0,0162
Bloque	93,78 3	31,26 0,2	20 0,8963
Error	1902,91	12 15	8,58
Total	4984,91	19	

Test:LSD Fisher Alfa=0,05 DMS=19,40095

Error: 158,5755 gl: 12

Tratamiento	Mediasn	E.E.			
Guadalupe	69,58 4	6,30	Α		
Leona	56,87 4	6,30	Α	В	
Altagracia	46,22 4	6,30		В	C
Candy	39,09 4	6,30		В	C
Cimarron	36,44 4	6,30			C

Letras distintas indican diferencias significativas(p <= 0.05)

Variable	N	R ²	R² Ai	CV
%tam 2	20	0,66	0,47	20,92

Cuadro de Análisis de la Varianza (SC tipo III)

_F.V.	SC gl	CM	F p-v	<u>alor</u>
Modelo	2123,67	7	303,38 3,3	7 0,0314
Tratamiento	1987,05	4	496,765,5	2 0,0093
Bloque	136,62	3	45,54 0,5	1 0,6853
Error	1079,68	12	89,97	
Total	3203,36	19		

Test:LSD Fisher Alfa=0,05 DMS=14,61377

Error: 89,9735 gl: 12

Tratamiento	Mediasn	E.E.				
Cimarron	56,44 4	4,74	A			
Altagracia	50,92 4	4,74	A	В		
Candy	50,42 4	4,74	A	В		
Leona	40,80 4	4,74		В	C	
Guadalupe	28,14 4	4,74			<u>C</u>	
Letras distintas indican diferencias significativas $(p \le 0.05)$						

Variable	N	R ²	R² Aj	CV
% tam 3	20	0,45	0,13	95,17

F.V.	SC gl	CM	F	p-valor
Modelo	226,10 7	32,30	1,42	0,2842
Tratamiento	214,56 4	53,64	2,35	0,1128
Bloque	11,54 3	3,85	0,17	0,9155
Error	273,61 12	22,80		
Total	499,71 19			

Test:LSD Fisher Alfa=0,05 DMS=7,35669

Error: 22,8011 gl: 12

Tratamiento	Mediasn	E.E.		
Candy	10,49 4	2,39	A	
Cimarron	7,12 4	2,39	A	В
Altagracia	2,86 4	2,39		В
Leona	2,33 4	2,39		В
Guadalupe	2,29 4	2,39		В

Letras distintas indican diferencias significativas $(p \le 0.05)$

ANAVA Altura, número de hojas e incidencia de alternaría 60 DDT

C:\Users\Hortalizas\Documents\Variables de campo c
v cebolla amarilla 2013.xls: 19/08/2013 - 14:33:51

Análisis de la varianza

<u>Varia</u>	ble	N	R ²	R² Aj	CV
Alt	24	0,91	0,86	8,77	

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valo	<u>r</u>	
Model	O	3634	1,22	8	454,28	3 18,85	<0,0001
Tra	3556,6	55	5	711,33	29,51	<0,000)1
Blo	77,57	7 3	25,86	1,07	0,390	3	
Error	361,5	3	15	24,10			
<u>Total</u>	3995,7	76	23				_

Test:LSD Fisher Alfa=0,05 DMS=7,39926

Error: 24,1022 gl: 15

_Tra	Mediasn	E.E.			
Candy	66,08 4	2,45	A		
Cimarron	62,38 4	2,45	A		
Guadalupe	62,15 4	2,45	A		
Altagracia	61,98 4	2,45	A		
Leona	52,98 4	2,45		В	
SK 110467	30,23 4	2,45			<u>C</u>
Letras distintas indican diferencias significativas($p < = 0.05$)					

Variable	N	R ²	R² Aj	CV
# Hojas	24	0,90	0,84	8,55

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor
Model	lo	45,06	8	5,63	16,28 <0,0001
Tra	41,86	5	8,37	24,20	< 0,0001
Blo	3,20	3	1,07	3,09	0,0593
Error	5,19	15	0,35		
<u>Total</u>	50,25	23			

Test:LSD Fisher Alfa=0,05 DMS=0,88640

Error: 0,3459 gl: 15

<u>Tra</u>	Medias	n	E.E.		
Cimarron	7,83	4	0,29	A	
Candy	7,83	4	0,29	A	
Altagracia	7,43	4	0,29	A	
Guadalupe	7,10	4	0,29	A	
Leona	7,08	4	0,29	A	
SK 110467	4,00	4	0,29		В

Letras distintas indican diferencias significativas($p \le 0.05$)

<u>Variable</u>	N	R ²	R ² Ai	CV
% Alter	24	0,68	0,51	19,38

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	<u>. </u>	
Model	.0	1400,	00	8	175,00	3,94	0,0107
Tra	1171,8	38	5	234,38	5,28	0,0054	
Blo	228,1	3	3	76,04	1,71	0,2070	
Error	665,6	3	15	44,38			
Total	2065,6	53	23				

Test:LSD Fisher Alfa=0,05 DMS=10,03989

Error: 44,3750 gl: 15

<u>Tra</u>	Mediasn	E.E.			
Leona	42,50 4	3,33	A		
Guadalupe	42,50 4	3,33	A		
Cimarron	35,00 4	3,33	A	В	
Altagracia	33,75 4	3,33	A	В	
SK 110467	30,00 4	3,33		В	C
Candy	22,50 4	3,33			C

Letras distintas indican diferencias significativas($p \le 0.05$)

ANAVA Variables de campo cv cebolla 65 ddt

C:\Users\Hortalizas\Documents\Variables de campo cv cebolla amarilla 2013.xls: 19/08/2013 - 14:41:33

Análisis de la varianza

Varia	ble	N	R^2	R ² Aj	CV
Alt	24	0,94	0,91	7,01	

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	r	
Model	.0	3320	0,00	8	-		<0,0001
Tra	3280,	11	5	656,02	46,28	<0,000)1
Blo	39,89	9 3	13,30	0,94	0,4468	8	
Error	212,6	51	15	14,17			
<u>Total</u>	3532,	51	23				

Test:LSD Fisher Alfa=0,05 DMS=5,67421

Error: 14,1740 gl: 15

Tra	Mediasn	E.E.				
Candy	63,90 4	1,88	A			
Altagracia	61,68 4	1,88	A			
Guadalupe	60,65 4	1,88	A	В		
Cimarron	55,35 4	1,88		В	C	
Leona	51,25 4	1,88			C	
SK 110467	29,30 4	1,88				D

Variable	N	\mathbb{R}^2	R ² Aj	CV
# Hoias	24	0.90	0.85	9,64

F.V.	SC	gl	CM	F	p-valor
Model	O	66,68	8	8,33	17,75 <0,0001
Tra	65,97	5	13,19	28,10	<0,0001
Blo	0,70	3	0,23	0,50	0,6891
Error	7,04	15	0,47		
<u>Total</u>	73,72	23			

Test:LSD Fisher Alfa=0,05 DMS=1,03277

Error: 0,4696 gl: 15

Tra	Medias	sn	E.E.				
Candy	8,63	4	0,34	A			
Altagracia	8,20	4	0,34	A	В		
Cimarron	8,10	4	0,34	A	В		
Guadalupe	7,45	4	0,34		В	C	
Leona	6,58	4	0,34			C	
SK 110467	3,70	4	0,34				D
Letras distint	as indice	an d	liferencias	sign	ificativas	$s(p \le 0)$	0,05)

Variable	N	R ²	R² Aj	CV
% Alter	24	0,68	0,51	19,38

Cuadro de Análisis de la Varianza (SC tipo III)

F.V.	SC	gl	CM	F	p-valor	<u>.</u>	
Model	o	1400	0,00	8	175,00	3,94	0,0107
Tra	1171,8	88	5	234,38	5,28	0,0054	
Blo	228,1	3	3	76,04	1,71	0,2070	
Error	665,6	3	15	44,38			
Total	2065,6	53	23				

Test:LSD Fisher Alfa=0,05 DMS=10,03989

Error: 44,3750 gl: 15

<u>Tra</u>	Mediasn	E.E.			
Leona	42,50 4	3,33	A		
Guadalupe	42,50 4	3,33	Α		
Cimarron	35,00 4	3,33	Α	В	
Altagracia	33,75 4	3,33	Α	В	
SK 110467	30,00 4	3,33		В	C
Candy	22,50 4	3,33			C